forked from THUDM/ChatGLM3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_hf.py
570 lines (498 loc) · 20.1 KB
/
finetune_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# -*- coding: utf-8 -*-
import os
import jieba
import dataclasses as dc
import functools
from collections.abc import Callable, Mapping, Sequence
from pathlib import Path
from typing import Annotated, Any, Optional, Union
import numpy as np
import ruamel.yaml as yaml
import torch
import typer
from datasets import Dataset, DatasetDict, NamedSplit, Split, load_dataset
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
from peft import (
PeftConfig,
PeftModelForCausalLM,
get_peft_config,
get_peft_model
)
from rouge_chinese import Rouge
from torch import nn
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
EvalPrediction,
GenerationConfig,
PreTrainedModel,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
Seq2SeqTrainingArguments, AutoConfig,
)
from transformers import DataCollatorForSeq2Seq as _DataCollatorForSeq2Seq
from transformers import Seq2SeqTrainer as _Seq2SeqTrainer
ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
app = typer.Typer(pretty_exceptions_show_locals=False)
class DataCollatorForSeq2Seq(_DataCollatorForSeq2Seq):
def __call__(self, features, return_tensors=None):
output_ids = (
[feature['output_ids'] for feature in features]
if 'output_ids' in features[0].keys()
else None
)
if output_ids is not None:
max_output_length = max(len(out) for out in output_ids)
if self.pad_to_multiple_of is not None:
max_output_length = (
(
max_output_length + self.pad_to_multiple_of - 1) //
self.pad_to_multiple_of * self.pad_to_multiple_of
)
for feature in features:
remainder = [self.tokenizer.pad_token_id] * (
max_output_length - len(feature['output_ids'])
)
if isinstance(feature['output_ids'], list):
feature['output_ids'] = feature['output_ids'] + remainder
else:
feature['output_ids'] = np.concatenate(
[feature['output_ids'], remainder]
).astype(np.int64)
return super().__call__(features, return_tensors)
class Seq2SeqTrainer(_Seq2SeqTrainer):
def prediction_step(
self,
model: nn.Module,
inputs: dict[str, Any],
prediction_loss_only: bool,
ignore_keys=None,
**gen_kwargs,
) -> tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
if self.args.predict_with_generate:
output_ids = inputs.pop('output_ids')
input_ids = inputs['input_ids']
loss, generated_tokens, labels = super().prediction_step(
model, inputs, prediction_loss_only, ignore_keys, **gen_kwargs
)
generated_tokens = generated_tokens[:, input_ids.size()[1]:]
if self.args.predict_with_generate:
labels = output_ids
return loss, generated_tokens, labels
# For P-Tuning a new save_model function is fine for the prefix_encoder model
# but may cost problems for the whole model loading
# def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
# if output_dir is None:
# output_dir = self.args.output_dir
# os.makedirs(output_dir, exist_ok=True)
# ptuning_params = {k: v for k, v in self.model.transformer.prefix_encoder.state_dict().items()}
#
# torch.save(ptuning_params, os.path.join(output_dir, 'pytorch_model.bin'))
#
# print(f"P-Tuning model weights saved in {output_dir}")
#
# if self.tokenizer is not None:
# self.tokenizer.save_pretrained(output_dir)
def _resolve_path(path: Union[str, Path]) -> Path:
return Path(path).expanduser().resolve()
def _sanity_check(
input_ids: Sequence[int],
output_ids: Sequence[int],
tokenizer: PreTrainedTokenizer,
):
print('--> Sanity check')
for in_id, out_id in zip(input_ids, output_ids):
if in_id == 0:
continue
if in_id in tokenizer.tokenizer.index_special_tokens:
in_text = tokenizer.tokenizer.index_special_tokens[in_id]
else:
in_text = tokenizer.decode([in_id])
print(f'{repr(in_text):>20}: {in_id} -> {out_id}')
@functools.cache
def _get_yaml_parser() -> yaml.YAML:
parser = yaml.YAML(typ='safe', pure=True)
parser.indent(mapping=2, offset=2, sequence=4)
parser.default_flow_style = False
return parser
@dc.dataclass
class DataConfig(object):
train_file: str
val_file: Optional[str] = None
test_file: Optional[str] = None
num_proc: Optional[int] = None
@property
def data_format(self) -> str:
return Path(self.train_file).suffix
@property
def data_files(self) -> dict[NamedSplit, str]:
return {
split: data_file
for split, data_file in zip(
[Split.TRAIN, Split.VALIDATION, Split.TEST],
[self.train_file, self.val_file, self.test_file],
)
if data_file is not None
}
@dc.dataclass
class FinetuningConfig(object):
data_config: DataConfig
max_input_length: int
max_output_length: int
training_args: Seq2SeqTrainingArguments = dc.field(
default_factory=lambda: Seq2SeqTrainingArguments(output_dir='./output')
)
peft_config: Optional[PeftConfig] = None
def __post_init__(self):
if not self.training_args.do_eval or self.data_config.val_file is None:
# skips the evaluation stage when `do_eval` or `eval_file` is not provided
self.training_args.do_eval = False
self.training_args.evaluation_strategy = 'no'
self.data_config.val_file = None
else:
self.training_args.per_device_eval_batch_size = (
self.training_args.per_device_eval_batch_size
or self.training_args.per_device_train_batch_size
)
@classmethod
def from_dict(cls, **kwargs) -> 'FinetuningConfig':
training_args = kwargs.get('training_args', None)
if training_args is not None and not isinstance(
training_args, Seq2SeqTrainingArguments
):
gen_config = training_args.get('generation_config')
# TODO: a bit hacky
if not isinstance(gen_config, GenerationConfig):
training_args['generation_config'] = GenerationConfig(
**gen_config
)
kwargs['training_args'] = Seq2SeqTrainingArguments(**training_args)
data_config = kwargs.get('data_config')
if not isinstance(data_config, DataConfig):
kwargs['data_config'] = DataConfig(**data_config)
peft_config = kwargs.get('peft_config', None)
if peft_config is not None and not isinstance(peft_config, PeftConfig):
kwargs['peft_config'] = get_peft_config(peft_config)
return cls(**kwargs)
@classmethod
def from_file(cls, path: Union[str, Path]) -> 'FinetuningConfig':
path = _resolve_path(path)
kwargs = _get_yaml_parser().load(path)
return cls.from_dict(**kwargs)
def _load_datasets(
data_dir: Path,
data_format: str,
data_files: dict[NamedSplit, str],
num_proc: Optional[int],
) -> DatasetDict:
if data_format in ('.csv', '.json', '.jsonl'):
dataset_dct = load_dataset(
data_format[1:],
data_dir=data_dir,
data_files=data_files,
num_proc=num_proc,
)
else:
err_msg = f"Cannot load dataset in the '{data_format}' format."
raise NotImplementedError(err_msg)
return dataset_dct
class DataManager(object):
def __init__(self, data_dir: str, data_config: DataConfig):
self._num_proc = data_config.num_proc
self._dataset_dct = _load_datasets(
_resolve_path(data_dir),
data_config.data_format,
data_config.data_files,
self._num_proc,
)
def _get_dataset(self, split: NamedSplit) -> Optional[Dataset]:
return self._dataset_dct.get(split, None)
def get_dataset(
self,
split: NamedSplit,
process_fn: Callable[[dict[str, Any]], dict[str, Any]],
batched: bool = True,
remove_orig_columns: bool = True,
) -> Optional[Dataset]:
orig_dataset = self._get_dataset(split)
if orig_dataset is None:
return
if remove_orig_columns:
remove_columns = orig_dataset.column_names
else:
remove_columns = None
return orig_dataset.map(
process_fn,
batched=batched,
remove_columns=remove_columns,
num_proc=self._num_proc,
)
def print_model_size(model: PreTrainedModel):
print("--> Model")
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\n--> model has {total_params / 1e6}M params\n")
def process_batch(
batch: Mapping[str, Sequence],
tokenizer: PreTrainedTokenizer,
max_input_length: int,
max_output_length: int,
) -> dict[str, list]:
batched_tools = batch.get('tools', None)
batched_conv = batch['conversations']
batched_input_ids = []
batched_labels = []
if batched_tools is None:
batched_tools = [None] * len(batched_conv)
for tools, conv in zip(batched_tools, batched_conv):
input_ids, loss_masks = [
tokenizer.get_command('[gMASK]'),
tokenizer.get_command('sop'),
], [False, False]
if tools is not None:
raise NotImplementedError()
for message in conv:
if message['role'] in ('system', 'user'):
loss_mask_val = False
else:
loss_mask_val = True
if message['role'] == 'tool':
raise NotImplementedError()
else:
new_input_ids = tokenizer.build_single_message(
message['role'], '', message['content']
)
new_loss_masks = [loss_mask_val] * len(new_input_ids)
input_ids += new_input_ids
loss_masks += new_loss_masks
input_ids.append(tokenizer.eos_token_id)
loss_masks = [False, *loss_masks]
labels = []
for input_id, mask in zip(input_ids, loss_masks):
if mask:
labels.append(input_id)
else:
labels.append(-100)
max_length = max_input_length + max_output_length + 1
batched_input_ids.append(input_ids[:max_length])
batched_labels.append(labels[:max_length])
return {'input_ids': batched_input_ids, 'labels': batched_labels}
def process_batch_eval(
batch: Mapping[str, Sequence],
tokenizer: PreTrainedTokenizer,
max_input_length: int,
max_output_length: int,
) -> dict[str, list]:
batched_tools = batch.get('tools', None)
batched_conv = batch['conversations']
batched_input_ids = []
# To avoid computing loss, we do not provide the `labels` field in the input dictionary.
batched_output_ids = []
if batched_tools is None:
batched_tools = [None] * len(batched_conv)
for tools, conv in zip(batched_tools, batched_conv):
input_ids = [
tokenizer.get_command('[gMASK]'),
tokenizer.get_command('sop'),
]
if tools is not None:
raise NotImplementedError()
for message in conv:
if len(input_ids) >= max_input_length:
break
if message['role'] == 'tool':
raise NotImplementedError()
else:
new_input_ids = tokenizer.build_single_message(
message['role'], '', message['content']
)
if message['role'] == 'assistant':
output_prompt, output_ids = (
new_input_ids[:1],
new_input_ids[1:],
)
output_ids.append(tokenizer.eos_token_id)
batched_input_ids.append(
input_ids[:max_input_length] + output_prompt[:1]
)
batched_output_ids.append(output_ids[:max_output_length])
input_ids += new_input_ids
return {'input_ids': batched_input_ids, 'output_ids': batched_output_ids}
# Not sure if this is necessary, can set it to half.
# If train with cpu, cast all params to fp32 instead of trainable ones.
def _prepare_model_for_training(model: nn.Module, use_cpu: bool):
for param in model.parameters():
if param.requires_grad or use_cpu:
param.data = param.data.to(torch.float32)
def load_tokenizer_and_model(
model_dir: str,
peft_config: Optional[PeftConfig] = None,
) -> tuple[PreTrainedTokenizer, nn.Module]:
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
if peft_config is not None:
if peft_config.peft_type.name == "PREFIX_TUNING":
config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
config.pre_seq_len = peft_config.num_virtual_tokens
config.use_cache = False
model = AutoModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True,
config=config,
)
if peft_config.peft_type.name == "LORA":
model = AutoModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True,
empty_init=False,
use_cache=False
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
else:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True,
empty_init=False,
use_cache=False
)
print_model_size(model)
return tokenizer, model
def compute_metrics(eval_preds: EvalPrediction, tokenizer: PreTrainedTokenizer):
batched_pred_ids, batched_label_ids = eval_preds
metrics_dct = {'rouge-1': [], 'rouge-2': [], 'rouge-l': [], 'bleu-4': []}
for pred_ids, label_ids in zip(batched_pred_ids, batched_label_ids):
pred_txt = tokenizer.decode(pred_ids).strip()
label_txt = tokenizer.decode(label_ids).strip()
pred_tokens = list(jieba.cut(pred_txt))
label_tokens = list(jieba.cut(label_txt))
rouge = Rouge()
scores = rouge.get_scores(' '.join(pred_tokens), ' '.join(label_tokens))
for k, v in scores[0].items():
metrics_dct[k].append(round(v['f'] * 100, 4))
metrics_dct['bleu-4'].append(
sentence_bleu(
[label_tokens],
pred_tokens,
smoothing_function=SmoothingFunction().method3,
)
)
return {k: np.mean(v) for k, v in metrics_dct.items()}
@app.command()
def main(
data_dir: Annotated[str, typer.Argument(help='')],
model_dir: Annotated[
str,
typer.Argument(
help='A string that specifies the model id of a pretrained model configuration hosted on huggingface.co, or a path to a directory containing a model configuration file.'
),
],
config_file: Annotated[str, typer.Argument(help='')],
auto_resume_from_checkpoint: str = typer.Argument(
default='',
help='If entered as yes, automatically use the latest save checkpoint. If it is a numerical example 12 15, use the corresponding save checkpoint. If the input is no, restart training'
),
):
ft_config = FinetuningConfig.from_file(config_file)
tokenizer, model = load_tokenizer_and_model(model_dir, peft_config=ft_config.peft_config)
data_manager = DataManager(data_dir, ft_config.data_config)
train_dataset = data_manager.get_dataset(
Split.TRAIN,
functools.partial(
process_batch,
tokenizer=tokenizer,
max_input_length=ft_config.max_input_length,
max_output_length=ft_config.max_output_length,
),
batched=True,
)
print('train_dataset:', train_dataset)
val_dataset = data_manager.get_dataset(
Split.VALIDATION,
functools.partial(
process_batch_eval,
tokenizer=tokenizer,
max_input_length=ft_config.max_input_length,
max_output_length=ft_config.max_output_length,
),
batched=True,
)
if val_dataset is not None:
print('val_dataset:', val_dataset)
test_dataset = data_manager.get_dataset(
Split.TEST,
functools.partial(
process_batch_eval,
tokenizer=tokenizer,
max_input_length=ft_config.max_input_length,
max_output_length=ft_config.max_output_length,
),
batched=True,
)
if test_dataset is not None:
print('test_dataset:', test_dataset)
# checks encoded dataset
_sanity_check(
train_dataset[0]["input_ids"], train_dataset[0]["labels"], tokenizer
)
# turn model to fp32
_prepare_model_for_training(model, ft_config.training_args.use_cpu)
ft_config.training_args.generation_config.pad_token_id = (
tokenizer.pad_token_id
)
ft_config.training_args.generation_config.eos_token_id = [
tokenizer.eos_token_id,
tokenizer.get_command('<|user|>'),
tokenizer.get_command('<|observation|>'),
]
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
trainer = Seq2SeqTrainer(
model=model,
args=ft_config.training_args,
data_collator=DataCollatorForSeq2Seq(
tokenizer=tokenizer,
padding='longest',
return_tensors='pt',
),
train_dataset=train_dataset,
eval_dataset=val_dataset.select(list(range(50))),
tokenizer=tokenizer if ft_config.peft_config.peft_type != "LORA" else None, # LORA does not need tokenizer
compute_metrics=functools.partial(compute_metrics, tokenizer=tokenizer),
)
if auto_resume_from_checkpoint.upper() == "" or auto_resume_from_checkpoint is None:
trainer.train()
else:
output_dir = ft_config.training_args.output_dir
dirlist = os.listdir(output_dir)
checkpoint_sn = 0
for checkpoint_str in dirlist:
if checkpoint_str.find("eckpoint") > 0 and checkpoint_str.find("tmp") == -1:
checkpoint = int(checkpoint_str.replace("checkpoint-", ""))
if checkpoint > checkpoint_sn:
checkpoint_sn = checkpoint
if auto_resume_from_checkpoint.upper() == "YES":
if checkpoint_sn > 0:
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
checkpoint_directory = os.path.join(output_dir, "checkpoint-" + str(checkpoint_sn))
print("resume checkpoint from checkpoint-" + str(checkpoint_sn))
trainer.train(resume_from_checkpoint=checkpoint_directory)
else:
trainer.train()
else:
if auto_resume_from_checkpoint.isdigit():
if int(auto_resume_from_checkpoint) > 0:
checkpoint_sn = int(auto_resume_from_checkpoint)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
checkpoint_directory = os.path.join(output_dir, "checkpoint-" + str(checkpoint_sn))
print("resume checkpoint from checkpoint-" + str(checkpoint_sn))
trainer.train(resume_from_checkpoint=checkpoint_directory)
else:
print(auto_resume_from_checkpoint,
"The specified checkpoint sn(" + auto_resume_from_checkpoint + ") has not been saved. Please search for the correct chkeckpoint in the model output directory")
# test stage
if test_dataset is not None:
trainer.predict(test_dataset)
if __name__ == '__main__':
app()