-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar.py
155 lines (127 loc) · 5.51 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
import os
import argparse
from resnet import ResNet18
from utils import *
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r',default=False, action='store_true', help='resume from checkpoint')
parser.add_argument('--bs', default=512, type=int, help='batch size')
parser.add_argument('--es', default=100, type=int, help='epoch size')
parser.add_argument('--stepsize', type=int, default=30)
parser.add_argument('--gamma', type=float, default=0.1, help="learning rate decay")
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(device)
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
def main():
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.bs, shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.bs, shuffle=False, num_workers=4)
# Model
print('==> Building model..')
net = ResNet18(num_classes=10)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.stepsize, gamma=args.gamma)
for epoch in range(0, args.es):
print('\nEpoch: %d Learning rate: %f' % (epoch, optimizer.param_groups[0]['lr']))
train_features,train_labels = train( optimizer, net, trainloader, criterion)
# visualization(train_features, train_labels)
test_features, test_labels = test(net,testloader,criterion)
visualization(test_features, test_labels)
scheduler.step()
# Training
def train( optimizer, net, trainloader, criterion):
net.train()
train_loss = 0
correct = 0
total = 0
train_features = []
train_labels = []
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
features, outputs = net(inputs)
train_features.append(features)
train_labels.append(targets)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
return train_features,train_labels
def test(net,testloader,criterion):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
test_features = []
test_labels = []
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
features, outputs = net(inputs)
test_features.append(features)
test_labels.append(targets)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
return test_features, test_labels
def visualization(featureList, labelList):
assert len(featureList) == len(labelList)
assert len(featureList) > 0
feature = featureList[0]
label = labelList[0]
for i in range(1, len(labelList)):
feature = torch.cat([feature,featureList[i]],dim=0)
label = torch.cat([label, labelList[i]], dim=0)
feature =feature.cpu().detach().numpy()
# Using PCA to reduce dimension to a reasonable dimension as recommended in
# https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
feature = PCA(n_components=50).fit_transform(feature)
feature_embedded = TSNE(n_components=2).fit_transform(feature)
print(f"feature shape: {feature.shape}")
print(f"feature_embedded shape: {feature_embedded.shape}")
print(f"label shape: {label.shape}")
if __name__ == '__main__':
main()