A small command line program to test and run AutoAnnotation Scripts.
There are two modes to run this script in. If you already have a model uploaded into the server, and you're having issues with running it in production, you can pass in the model name and a task id that you want to test against.
# Note that this module can be found in cvat/utils/auto_annotation/run_model.py
$ python /path/to/run_model.py --model-name mymodel --task-id 4
If you're running in docker, this can be useful way to debug your model.
$ docker exec -it cvat bash -ic 'python3 ~/cvat/apps/auto_annotation/run_model.py --model-name my-model --task-id 4
If you are developing an auto annotation model or you can't get something uploaded into the server, then you'll need to specify the individual inputs.
# Note that this module can be found in cvat/utils/auto_annotation/run_model.py
$ python path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json
Some programs need to run unrestricted or as an administer. Use the --unrestriced
flag to simulate.
You can pass image files in to fully simulate your findings. Images are passed in as a list
$ python /path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg
Additionally, it's sometimes useful to visualize your images.
Use the --show-images
flag to have each image with the annotations pop up.
$ python /path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg \
--show-images
If you'd like to see the labels printed on the image, use the --show-labels
flag
$ python /path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg \
--show-images \
--show-labels
There's a command that let's you scan quickly by setting the length of time (in milliseconds) to display each image.
Use the --show-image-delay
flag and set the appropriate time.
In this example, 2000 milliseconds is 2 seconds for each image.
# Display each image in a window for 2 seconds
$ python /path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg \
--show-images \
--show-image-delay 2000
Visualization isn't always enough.
The CVAT has a serialization step that can throw errors on model upload even after successful visualization.
You must install the necessary packages installed, but then you can add the --serialize
command to ensure that your
results will serialize correctly.
$ python /path/to/run_model.py --py /path/to/python/interp.py \
--xml /path/to/xml/file.xml \
--bin /path/to/bin/file.bin \
--json /path/to/json/mapping/mapping.json \
--image-files /path/to/img.jpg /path2/to/img2.png /path/to/img3.jpg \
--serialize