|
| 1 | +package interval; |
| 2 | + |
| 3 | +import java.util.ArrayList; |
| 4 | +import java.util.Arrays; |
| 5 | +import java.util.Collections; |
| 6 | +import java.util.HashMap; |
| 7 | +import java.util.List; |
| 8 | +import java.util.Map; |
| 9 | +import java.util.TreeMap; |
| 10 | + |
| 11 | +import utility.Interval; |
| 12 | + |
| 13 | +/* |
| 14 | +Given a set of intervals, for each of the interval i, |
| 15 | +check if there exists an interval j whose start point is bigger than or equal to the end point of the interval i, which can be called that j is on the "right" of i. |
| 16 | +
|
| 17 | +For any interval i, you need to store the minimum interval j's index, which means that the interval j has the minimum start point to build the "right" relationship for interval i. |
| 18 | +If the interval j doesn't exist, store -1 for the interval i. Finally, you need output the stored value of each interval as an array. |
| 19 | +
|
| 20 | +Note: |
| 21 | +You may assume the interval's end point is always bigger than its start point. |
| 22 | +You may assume none of these intervals have the same start point. |
| 23 | +
|
| 24 | +Example 1: |
| 25 | +Input: [ [1,2] ] |
| 26 | +Output: [-1] |
| 27 | +Explanation: There is only one interval in the collection, so it outputs -1. |
| 28 | +
|
| 29 | +Example 2: |
| 30 | +Input: [ [3,4], [2,3], [1,2] ] |
| 31 | +Output: [-1, 0, 1] |
| 32 | +Explanation: There is no satisfied "right" interval for [3,4]. |
| 33 | +For [2,3], the interval [3,4] has minimum-"right" start point; |
| 34 | +For [1,2], the interval [2,3] has minimum-"right" start point. |
| 35 | +
|
| 36 | +Example 3: |
| 37 | +Input: [ [1,4], [2,3], [3,4] ] |
| 38 | +Output: [-1, 2, -1] |
| 39 | +Explanation: There is no satisfied "right" interval for [1,4] and [3,4]. |
| 40 | +For [2,3], the interval [3,4] has minimum-"right" start point. |
| 41 | +*/ |
| 42 | + |
| 43 | +public class FindRightInterval |
| 44 | +{ |
| 45 | + class Point implements Comparable<Point> |
| 46 | + { |
| 47 | + int val; |
| 48 | + int flag; // 1 start, 0 end |
| 49 | + int index; |
| 50 | + |
| 51 | + public Point(int val, int flag, int index) { |
| 52 | + this.val = val; |
| 53 | + this.flag = flag; |
| 54 | + this.index = index; |
| 55 | + } |
| 56 | + |
| 57 | + public int compareTo( Point o ) |
| 58 | + { |
| 59 | + if ( this.val == o.val ) |
| 60 | + return this.flag - o.flag; // end in front of start |
| 61 | + return this.val - o.val; |
| 62 | + } |
| 63 | + } |
| 64 | + |
| 65 | + public int[] findRightInterval( Interval[] intervals ) |
| 66 | + { |
| 67 | + if ( intervals == null || intervals.length == 0 ) |
| 68 | + return new int[] {}; |
| 69 | + |
| 70 | + int[] res = new int[intervals.length]; |
| 71 | + Arrays.fill( res, -1 ); |
| 72 | + |
| 73 | + List<Point> points = new ArrayList<>(); |
| 74 | + for ( int i = 0; i < intervals.length; i++ ) |
| 75 | + { |
| 76 | + points.add( new Point( intervals[i].start, 1, i ) ); |
| 77 | + points.add( new Point( intervals[i].end, 0, i ) ); |
| 78 | + } |
| 79 | + |
| 80 | + Collections.sort( points ); |
| 81 | + |
| 82 | + List<Integer> prevIdxs = new ArrayList<>(); |
| 83 | + |
| 84 | + for ( Point point : points ) |
| 85 | + { |
| 86 | + if ( point.flag == 1 ) |
| 87 | + { |
| 88 | + for ( Integer prevIdx : prevIdxs ) |
| 89 | + { |
| 90 | + res[prevIdx] = point.index; |
| 91 | + } |
| 92 | + prevIdxs = new ArrayList<>(); |
| 93 | + } |
| 94 | + else |
| 95 | + { |
| 96 | + prevIdxs.add( point.index ); |
| 97 | + } |
| 98 | + } |
| 99 | + |
| 100 | + return res; |
| 101 | + } |
| 102 | + |
| 103 | + public int[] findRightIntervalTreeMap( Interval[] intervals ) |
| 104 | + { |
| 105 | + int[] result = new int[intervals.length]; |
| 106 | + java.util.NavigableMap<Integer, Integer> intervalMap = new TreeMap<>(); |
| 107 | + |
| 108 | + for ( int i = 0; i < intervals.length; ++i ) |
| 109 | + { |
| 110 | + intervalMap.put( intervals[i].start, i ); |
| 111 | + } |
| 112 | + |
| 113 | + for ( int i = 0; i < intervals.length; ++i ) |
| 114 | + { |
| 115 | + Map.Entry<Integer, Integer> entry = intervalMap.ceilingEntry( intervals[i].end ); |
| 116 | + result[i] = ( entry != null ) ? entry.getValue() : -1; |
| 117 | + } |
| 118 | + |
| 119 | + return result; |
| 120 | + } |
| 121 | + |
| 122 | + public int[] findRightIntervalBinarySearch( Interval[] intervals ) |
| 123 | + { |
| 124 | + Map<Integer, Integer> map = new HashMap<>(); |
| 125 | + List<Integer> starts = new ArrayList<>(); |
| 126 | + for ( int i = 0; i < intervals.length; i++ ) |
| 127 | + { |
| 128 | + map.put( intervals[i].start, i ); |
| 129 | + starts.add( intervals[i].start ); |
| 130 | + } |
| 131 | + |
| 132 | + Collections.sort( starts ); |
| 133 | + int[] res = new int[intervals.length]; |
| 134 | + for ( int i = 0; i < intervals.length; i++ ) |
| 135 | + { |
| 136 | + int end = intervals[i].end; |
| 137 | + int start = binarySearch( starts, end ); |
| 138 | + if ( start < end ) |
| 139 | + { |
| 140 | + res[i] = -1; |
| 141 | + } |
| 142 | + else |
| 143 | + { |
| 144 | + res[i] = map.get( start ); |
| 145 | + } |
| 146 | + } |
| 147 | + return res; |
| 148 | + } |
| 149 | + |
| 150 | + private int binarySearch( List<Integer> list, int x ) |
| 151 | + { |
| 152 | + int left = 0, right = list.size() - 1; |
| 153 | + while ( left < right ) |
| 154 | + { |
| 155 | + int mid = left + ( right - left ) / 2; |
| 156 | + if ( list.get( mid ) < x ) |
| 157 | + { |
| 158 | + left = mid + 1; |
| 159 | + } |
| 160 | + else |
| 161 | + { |
| 162 | + right = mid; |
| 163 | + } |
| 164 | + } |
| 165 | + return list.get( left ); |
| 166 | + } |
| 167 | +} |
0 commit comments