forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnmf_example.py
60 lines (54 loc) · 1.7 KB
/
nmf_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Example to run Non-negative Matrix Factorization (NMF) model with Ratio Split evaluation strategy"""
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
# Load the MovieLens 100K dataset
ml_100k = movielens.load_feedback()
# Instantiate an evaluation method.
eval_method = RatioSplit(
data=ml_100k,
test_size=0.2,
rating_threshold=4.0,
exclude_unknowns=True,
verbose=True,
seed=123,
)
# Instantiate a NMF recommender model.
nmf = cornac.models.NMF(
k=15,
max_iter=50,
learning_rate=0.005,
lambda_u=0.06,
lambda_v=0.06,
lambda_bu=0.02,
lambda_bi=0.02,
use_bias=False,
verbose=True,
seed=123,
)
# Instantiate evaluation metrics.
mae = cornac.metrics.MAE()
rmse = cornac.metrics.RMSE()
rec_20 = cornac.metrics.Recall(k=20)
pre_20 = cornac.metrics.Precision(k=20)
# Instantiate and then run an experiment.
cornac.Experiment(
eval_method=eval_method,
models=[nmf],
metrics=[mae, rmse, rec_20, pre_20],
user_based=True,
).run()