Skip to content

manzhihuangnian/AMCRNet

Repository files navigation

Actor-Multi-Scale Context Bidirectional Higher Order Interactive Relation Network for Spatio-Temporal Action Localization

notification

  1. This is the pytorch version implementation of paper 'AMCRNet:Actor-Multi-scale Context Bidirectional higher order Interactive Relation Network for Spatio-Temporal Action Localization',rebuilt from mmaction
  2. Trained models are provided in R50_8x8_k400.pth

Update

1.We correct the typos in Eq.(5) and Eq.(6) as follows.  

$Q_i,K_i,V_i=conv2d(I_i),$
$Attn_{i,j}=softmax(\frac{Q_iK_i^T}{\sqrt{C}}),$    (5)
$H_i=\displaystyle\sum_{j}^{N+M}Attn_{i,j}*V_j$

$Q_i,K_i,V_i=conv2d({{H,F}+temporal_pos}i),$ $Attn{i,j}=softmax(\frac{Q_iK_i^T}{\sqrt{C}}+HMask(i,j)),$    (6)
$O_i=\displaystyle\sum_{j}^{N+M}Attn_{i,j}*V_j$

test

  1. preparing data
    python tools\extract_frames.py --video_dir ava_path --frame_dir saving_dir --num_processes nuber_process
  1. run test script
    cd workspace && sh inference_AMCRNet.sh

TODO

  1. Add pre-trained weights of two-stage: R50_4x16_k400.pth、R101_8x8_k400.pth
  2. Add code of one-stage

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published