Actor-Multi-Scale Context Bidirectional Higher Order Interactive Relation Network for Spatio-Temporal Action Localization
- This is the pytorch version implementation of paper 'AMCRNet:Actor-Multi-scale Context Bidirectional higher order Interactive Relation Network for Spatio-Temporal Action Localization',rebuilt from mmaction
- Trained models are provided in R50_8x8_k400.pth
1.We correct the typos in Eq.(5) and Eq.(6) as follows.
$Q_i,K_i,V_i=conv2d({{H,F}+temporal_pos}i),$
$Attn{i,j}=softmax(\frac{Q_iK_i^T}{\sqrt{C}}+HMask(i,j)),$ (6)
- preparing data
python tools\extract_frames.py --video_dir ava_path --frame_dir saving_dir --num_processes nuber_process
- run test script
cd workspace && sh inference_AMCRNet.sh
- Add pre-trained weights of two-stage: R50_4x16_k400.pth、R101_8x8_k400.pth
- Add code of one-stage