forked from beagleboard/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsched.c
5756 lines (4998 loc) · 142 KB
/
sched.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
* hybrid priority-list and round-robin design with
* an array-switch method of distributing timeslices
* and per-CPU runqueues. Cleanups and useful suggestions
* by Davide Libenzi, preemptible kernel bits by Robert Love.
* 2003-09-03 Interactivity tuning by Con Kolivas.
* 2004-04-02 Scheduler domains code by Nick Piggin
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <asm/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
#include <linux/suspend.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/times.h>
#include <linux/acct.h>
#include <asm/tlb.h>
#include <asm/unistd.h>
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* Some helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
/*
* These are the 'tuning knobs' of the scheduler:
*
* Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
* default timeslice is 100 msecs, maximum timeslice is 800 msecs.
* Timeslices get refilled after they expire.
*/
#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE (100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT 30
#define CHILD_PENALTY 95
#define PARENT_PENALTY 100
#define EXIT_WEIGHT 3
#define PRIO_BONUS_RATIO 25
#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA 2
#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
#define STARVATION_LIMIT (MAX_SLEEP_AVG)
#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
/*
* If a task is 'interactive' then we reinsert it in the active
* array after it has expired its current timeslice. (it will not
* continue to run immediately, it will still roundrobin with
* other interactive tasks.)
*
* This part scales the interactivity limit depending on niceness.
*
* We scale it linearly, offset by the INTERACTIVE_DELTA delta.
* Here are a few examples of different nice levels:
*
* TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
* TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
* TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
* TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
*
* (the X axis represents the possible -5 ... 0 ... +5 dynamic
* priority range a task can explore, a value of '1' means the
* task is rated interactive.)
*
* Ie. nice +19 tasks can never get 'interactive' enough to be
* reinserted into the active array. And only heavily CPU-hog nice -20
* tasks will be expired. Default nice 0 tasks are somewhere between,
* it takes some effort for them to get interactive, but it's not
* too hard.
*/
#define CURRENT_BONUS(p) \
(NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
MAX_SLEEP_AVG)
#define GRANULARITY (10 * HZ / 1000 ? : 1)
#ifdef CONFIG_SMP
#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
num_online_cpus())
#else
#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
(1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
#endif
#define SCALE(v1,v1_max,v2_max) \
(v1) * (v2_max) / (v1_max)
#define DELTA(p) \
(SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
#define TASK_INTERACTIVE(p) \
((p)->prio <= (p)->static_prio - DELTA(p))
#define INTERACTIVE_SLEEP(p) \
(JIFFIES_TO_NS(MAX_SLEEP_AVG * \
(MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
#define TASK_PREEMPTS_CURR(p, rq) \
((p)->prio < (rq)->curr->prio)
/*
* task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
* to time slice values: [800ms ... 100ms ... 5ms]
*
* The higher a thread's priority, the bigger timeslices
* it gets during one round of execution. But even the lowest
* priority thread gets MIN_TIMESLICE worth of execution time.
*/
#define SCALE_PRIO(x, prio) \
max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
static unsigned int task_timeslice(task_t *p)
{
if (p->static_prio < NICE_TO_PRIO(0))
return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
else
return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
}
#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
< (long long) (sd)->cache_hot_time)
void __put_task_struct_cb(struct rcu_head *rhp)
{
__put_task_struct(container_of(rhp, struct task_struct, rcu));
}
EXPORT_SYMBOL_GPL(__put_task_struct_cb);
/*
* These are the runqueue data structures:
*/
#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
typedef struct runqueue runqueue_t;
struct prio_array {
unsigned int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];
};
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct runqueue {
spinlock_t lock;
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned long nr_running;
#ifdef CONFIG_SMP
unsigned long prio_bias;
unsigned long cpu_load[3];
#endif
unsigned long long nr_switches;
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
unsigned long nr_uninterruptible;
unsigned long expired_timestamp;
unsigned long long timestamp_last_tick;
task_t *curr, *idle;
struct mm_struct *prev_mm;
prio_array_t *active, *expired, arrays[2];
int best_expired_prio;
atomic_t nr_iowait;
#ifdef CONFIG_SMP
struct sched_domain *sd;
/* For active balancing */
int active_balance;
int push_cpu;
task_t *migration_thread;
struct list_head migration_queue;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
/* sys_sched_yield() stats */
unsigned long yld_exp_empty;
unsigned long yld_act_empty;
unsigned long yld_both_empty;
unsigned long yld_cnt;
/* schedule() stats */
unsigned long sched_switch;
unsigned long sched_cnt;
unsigned long sched_goidle;
/* try_to_wake_up() stats */
unsigned long ttwu_cnt;
unsigned long ttwu_local;
#endif
};
static DEFINE_PER_CPU(struct runqueue, runqueues);
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
*/
#define for_each_domain(cpu, domain) \
for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() (&__get_cpu_var(runqueues))
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev) do { } while (0)
#endif
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
static inline int task_running(runqueue_t *rq, task_t *p)
{
return rq->curr == p;
}
static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
{
}
static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
{
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq->lock.owner = current;
#endif
spin_unlock_irq(&rq->lock);
}
#else /* __ARCH_WANT_UNLOCKED_CTXSW */
static inline int task_running(runqueue_t *rq, task_t *p)
{
#ifdef CONFIG_SMP
return p->oncpu;
#else
return rq->curr == p;
#endif
}
static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
{
#ifdef CONFIG_SMP
/*
* We can optimise this out completely for !SMP, because the
* SMP rebalancing from interrupt is the only thing that cares
* here.
*/
next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
spin_unlock_irq(&rq->lock);
#else
spin_unlock(&rq->lock);
#endif
}
static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
{
#ifdef CONFIG_SMP
/*
* After ->oncpu is cleared, the task can be moved to a different CPU.
* We must ensure this doesn't happen until the switch is completely
* finished.
*/
smp_wmb();
prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
local_irq_enable();
#endif
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
/*
* task_rq_lock - lock the runqueue a given task resides on and disable
* interrupts. Note the ordering: we can safely lookup the task_rq without
* explicitly disabling preemption.
*/
static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
__acquires(rq->lock)
{
struct runqueue *rq;
repeat_lock_task:
local_irq_save(*flags);
rq = task_rq(p);
spin_lock(&rq->lock);
if (unlikely(rq != task_rq(p))) {
spin_unlock_irqrestore(&rq->lock, *flags);
goto repeat_lock_task;
}
return rq;
}
static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
__releases(rq->lock)
{
spin_unlock_irqrestore(&rq->lock, *flags);
}
#ifdef CONFIG_SCHEDSTATS
/*
* bump this up when changing the output format or the meaning of an existing
* format, so that tools can adapt (or abort)
*/
#define SCHEDSTAT_VERSION 12
static int show_schedstat(struct seq_file *seq, void *v)
{
int cpu;
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
seq_printf(seq, "timestamp %lu\n", jiffies);
for_each_online_cpu(cpu) {
runqueue_t *rq = cpu_rq(cpu);
#ifdef CONFIG_SMP
struct sched_domain *sd;
int dcnt = 0;
#endif
/* runqueue-specific stats */
seq_printf(seq,
"cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
cpu, rq->yld_both_empty,
rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
rq->ttwu_cnt, rq->ttwu_local,
rq->rq_sched_info.cpu_time,
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
seq_printf(seq, "\n");
#ifdef CONFIG_SMP
/* domain-specific stats */
preempt_disable();
for_each_domain(cpu, sd) {
enum idle_type itype;
char mask_str[NR_CPUS];
cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
seq_printf(seq, "domain%d %s", dcnt++, mask_str);
for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
itype++) {
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
sd->lb_cnt[itype],
sd->lb_balanced[itype],
sd->lb_failed[itype],
sd->lb_imbalance[itype],
sd->lb_gained[itype],
sd->lb_hot_gained[itype],
sd->lb_nobusyq[itype],
sd->lb_nobusyg[itype]);
}
seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
}
preempt_enable();
#endif
}
return 0;
}
static int schedstat_open(struct inode *inode, struct file *file)
{
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
char *buf = kmalloc(size, GFP_KERNEL);
struct seq_file *m;
int res;
if (!buf)
return -ENOMEM;
res = single_open(file, show_schedstat, NULL);
if (!res) {
m = file->private_data;
m->buf = buf;
m->size = size;
} else
kfree(buf);
return res;
}
struct file_operations proc_schedstat_operations = {
.open = schedstat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
#else /* !CONFIG_SCHEDSTATS */
# define schedstat_inc(rq, field) do { } while (0)
# define schedstat_add(rq, field, amt) do { } while (0)
#endif
/*
* rq_lock - lock a given runqueue and disable interrupts.
*/
static inline runqueue_t *this_rq_lock(void)
__acquires(rq->lock)
{
runqueue_t *rq;
local_irq_disable();
rq = this_rq();
spin_lock(&rq->lock);
return rq;
}
#ifdef CONFIG_SCHEDSTATS
/*
* Called when a process is dequeued from the active array and given
* the cpu. We should note that with the exception of interactive
* tasks, the expired queue will become the active queue after the active
* queue is empty, without explicitly dequeuing and requeuing tasks in the
* expired queue. (Interactive tasks may be requeued directly to the
* active queue, thus delaying tasks in the expired queue from running;
* see scheduler_tick()).
*
* This function is only called from sched_info_arrive(), rather than
* dequeue_task(). Even though a task may be queued and dequeued multiple
* times as it is shuffled about, we're really interested in knowing how
* long it was from the *first* time it was queued to the time that it
* finally hit a cpu.
*/
static inline void sched_info_dequeued(task_t *t)
{
t->sched_info.last_queued = 0;
}
/*
* Called when a task finally hits the cpu. We can now calculate how
* long it was waiting to run. We also note when it began so that we
* can keep stats on how long its timeslice is.
*/
static inline void sched_info_arrive(task_t *t)
{
unsigned long now = jiffies, diff = 0;
struct runqueue *rq = task_rq(t);
if (t->sched_info.last_queued)
diff = now - t->sched_info.last_queued;
sched_info_dequeued(t);
t->sched_info.run_delay += diff;
t->sched_info.last_arrival = now;
t->sched_info.pcnt++;
if (!rq)
return;
rq->rq_sched_info.run_delay += diff;
rq->rq_sched_info.pcnt++;
}
/*
* Called when a process is queued into either the active or expired
* array. The time is noted and later used to determine how long we
* had to wait for us to reach the cpu. Since the expired queue will
* become the active queue after active queue is empty, without dequeuing
* and requeuing any tasks, we are interested in queuing to either. It
* is unusual but not impossible for tasks to be dequeued and immediately
* requeued in the same or another array: this can happen in sched_yield(),
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
* to runqueue.
*
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeued() will clear that stamp when appropriate.
*/
static inline void sched_info_queued(task_t *t)
{
if (!t->sched_info.last_queued)
t->sched_info.last_queued = jiffies;
}
/*
* Called when a process ceases being the active-running process, either
* voluntarily or involuntarily. Now we can calculate how long we ran.
*/
static inline void sched_info_depart(task_t *t)
{
struct runqueue *rq = task_rq(t);
unsigned long diff = jiffies - t->sched_info.last_arrival;
t->sched_info.cpu_time += diff;
if (rq)
rq->rq_sched_info.cpu_time += diff;
}
/*
* Called when tasks are switched involuntarily due, typically, to expiring
* their time slice. (This may also be called when switching to or from
* the idle task.) We are only called when prev != next.
*/
static inline void sched_info_switch(task_t *prev, task_t *next)
{
struct runqueue *rq = task_rq(prev);
/*
* prev now departs the cpu. It's not interesting to record
* stats about how efficient we were at scheduling the idle
* process, however.
*/
if (prev != rq->idle)
sched_info_depart(prev);
if (next != rq->idle)
sched_info_arrive(next);
}
#else
#define sched_info_queued(t) do { } while (0)
#define sched_info_switch(t, next) do { } while (0)
#endif /* CONFIG_SCHEDSTATS */
/*
* Adding/removing a task to/from a priority array:
*/
static void dequeue_task(struct task_struct *p, prio_array_t *array)
{
array->nr_active--;
list_del(&p->run_list);
if (list_empty(array->queue + p->prio))
__clear_bit(p->prio, array->bitmap);
}
static void enqueue_task(struct task_struct *p, prio_array_t *array)
{
sched_info_queued(p);
list_add_tail(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
array->nr_active++;
p->array = array;
}
/*
* Put task to the end of the run list without the overhead of dequeue
* followed by enqueue.
*/
static void requeue_task(struct task_struct *p, prio_array_t *array)
{
list_move_tail(&p->run_list, array->queue + p->prio);
}
static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
{
list_add(&p->run_list, array->queue + p->prio);
__set_bit(p->prio, array->bitmap);
array->nr_active++;
p->array = array;
}
/*
* effective_prio - return the priority that is based on the static
* priority but is modified by bonuses/penalties.
*
* We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
* into the -5 ... 0 ... +5 bonus/penalty range.
*
* We use 25% of the full 0...39 priority range so that:
*
* 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
* 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
*
* Both properties are important to certain workloads.
*/
static int effective_prio(task_t *p)
{
int bonus, prio;
if (rt_task(p))
return p->prio;
bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
prio = p->static_prio - bonus;
if (prio < MAX_RT_PRIO)
prio = MAX_RT_PRIO;
if (prio > MAX_PRIO-1)
prio = MAX_PRIO-1;
return prio;
}
#ifdef CONFIG_SMP
static inline void inc_prio_bias(runqueue_t *rq, int prio)
{
rq->prio_bias += MAX_PRIO - prio;
}
static inline void dec_prio_bias(runqueue_t *rq, int prio)
{
rq->prio_bias -= MAX_PRIO - prio;
}
static inline void inc_nr_running(task_t *p, runqueue_t *rq)
{
rq->nr_running++;
if (rt_task(p)) {
if (p != rq->migration_thread)
/*
* The migration thread does the actual balancing. Do
* not bias by its priority as the ultra high priority
* will skew balancing adversely.
*/
inc_prio_bias(rq, p->prio);
} else
inc_prio_bias(rq, p->static_prio);
}
static inline void dec_nr_running(task_t *p, runqueue_t *rq)
{
rq->nr_running--;
if (rt_task(p)) {
if (p != rq->migration_thread)
dec_prio_bias(rq, p->prio);
} else
dec_prio_bias(rq, p->static_prio);
}
#else
static inline void inc_prio_bias(runqueue_t *rq, int prio)
{
}
static inline void dec_prio_bias(runqueue_t *rq, int prio)
{
}
static inline void inc_nr_running(task_t *p, runqueue_t *rq)
{
rq->nr_running++;
}
static inline void dec_nr_running(task_t *p, runqueue_t *rq)
{
rq->nr_running--;
}
#endif
/*
* __activate_task - move a task to the runqueue.
*/
static inline void __activate_task(task_t *p, runqueue_t *rq)
{
enqueue_task(p, rq->active);
inc_nr_running(p, rq);
}
/*
* __activate_idle_task - move idle task to the _front_ of runqueue.
*/
static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
{
enqueue_task_head(p, rq->active);
inc_nr_running(p, rq);
}
static int recalc_task_prio(task_t *p, unsigned long long now)
{
/* Caller must always ensure 'now >= p->timestamp' */
unsigned long long __sleep_time = now - p->timestamp;
unsigned long sleep_time;
if (__sleep_time > NS_MAX_SLEEP_AVG)
sleep_time = NS_MAX_SLEEP_AVG;
else
sleep_time = (unsigned long)__sleep_time;
if (likely(sleep_time > 0)) {
/*
* User tasks that sleep a long time are categorised as
* idle and will get just interactive status to stay active &
* prevent them suddenly becoming cpu hogs and starving
* other processes.
*/
if (p->mm && p->activated != -1 &&
sleep_time > INTERACTIVE_SLEEP(p)) {
p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
DEF_TIMESLICE);
} else {
/*
* The lower the sleep avg a task has the more
* rapidly it will rise with sleep time.
*/
sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
/*
* Tasks waking from uninterruptible sleep are
* limited in their sleep_avg rise as they
* are likely to be waiting on I/O
*/
if (p->activated == -1 && p->mm) {
if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
sleep_time = 0;
else if (p->sleep_avg + sleep_time >=
INTERACTIVE_SLEEP(p)) {
p->sleep_avg = INTERACTIVE_SLEEP(p);
sleep_time = 0;
}
}
/*
* This code gives a bonus to interactive tasks.
*
* The boost works by updating the 'average sleep time'
* value here, based on ->timestamp. The more time a
* task spends sleeping, the higher the average gets -
* and the higher the priority boost gets as well.
*/
p->sleep_avg += sleep_time;
if (p->sleep_avg > NS_MAX_SLEEP_AVG)
p->sleep_avg = NS_MAX_SLEEP_AVG;
}
}
return effective_prio(p);
}
/*
* activate_task - move a task to the runqueue and do priority recalculation
*
* Update all the scheduling statistics stuff. (sleep average
* calculation, priority modifiers, etc.)
*/
static void activate_task(task_t *p, runqueue_t *rq, int local)
{
unsigned long long now;
now = sched_clock();
#ifdef CONFIG_SMP
if (!local) {
/* Compensate for drifting sched_clock */
runqueue_t *this_rq = this_rq();
now = (now - this_rq->timestamp_last_tick)
+ rq->timestamp_last_tick;
}
#endif
if (!rt_task(p))
p->prio = recalc_task_prio(p, now);
/*
* This checks to make sure it's not an uninterruptible task
* that is now waking up.
*/
if (!p->activated) {
/*
* Tasks which were woken up by interrupts (ie. hw events)
* are most likely of interactive nature. So we give them
* the credit of extending their sleep time to the period
* of time they spend on the runqueue, waiting for execution
* on a CPU, first time around:
*/
if (in_interrupt())
p->activated = 2;
else {
/*
* Normal first-time wakeups get a credit too for
* on-runqueue time, but it will be weighted down:
*/
p->activated = 1;
}
}
p->timestamp = now;
__activate_task(p, rq);
}
/*
* deactivate_task - remove a task from the runqueue.
*/
static void deactivate_task(struct task_struct *p, runqueue_t *rq)
{
dec_nr_running(p, rq);
dequeue_task(p, p->array);
p->array = NULL;
}
/*
* resched_task - mark a task 'to be rescheduled now'.
*
* On UP this means the setting of the need_resched flag, on SMP it
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
#ifdef CONFIG_SMP
static void resched_task(task_t *p)
{
int cpu;
assert_spin_locked(&task_rq(p)->lock);
if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
return;
set_tsk_thread_flag(p, TIF_NEED_RESCHED);
cpu = task_cpu(p);
if (cpu == smp_processor_id())
return;
/* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
smp_mb();
if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
smp_send_reschedule(cpu);
}
#else
static inline void resched_task(task_t *p)
{
assert_spin_locked(&task_rq(p)->lock);
set_tsk_need_resched(p);
}
#endif
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
*/
inline int task_curr(const task_t *p)
{
return cpu_curr(task_cpu(p)) == p;
}
#ifdef CONFIG_SMP
typedef struct {
struct list_head list;
task_t *task;
int dest_cpu;
struct completion done;
} migration_req_t;
/*
* The task's runqueue lock must be held.
* Returns true if you have to wait for migration thread.
*/
static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
{
runqueue_t *rq = task_rq(p);
/*
* If the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
if (!p->array && !task_running(rq, p)) {
set_task_cpu(p, dest_cpu);
return 0;
}
init_completion(&req->done);
req->task = p;
req->dest_cpu = dest_cpu;
list_add(&req->list, &rq->migration_queue);
return 1;
}
/*
* wait_task_inactive - wait for a thread to unschedule.
*
* The caller must ensure that the task *will* unschedule sometime soon,
* else this function might spin for a *long* time. This function can't
* be called with interrupts off, or it may introduce deadlock with
* smp_call_function() if an IPI is sent by the same process we are
* waiting to become inactive.
*/
void wait_task_inactive(task_t *p)
{
unsigned long flags;
runqueue_t *rq;
int preempted;
repeat:
rq = task_rq_lock(p, &flags);
/* Must be off runqueue entirely, not preempted. */
if (unlikely(p->array || task_running(rq, p))) {
/* If it's preempted, we yield. It could be a while. */
preempted = !task_running(rq, p);
task_rq_unlock(rq, &flags);
cpu_relax();
if (preempted)
yield();
goto repeat;
}
task_rq_unlock(rq, &flags);
}
/***
* kick_process - kick a running thread to enter/exit the kernel
* @p: the to-be-kicked thread
*
* Cause a process which is running on another CPU to enter
* kernel-mode, without any delay. (to get signals handled.)
*
* NOTE: this function doesnt have to take the runqueue lock,
* because all it wants to ensure is that the remote task enters
* the kernel. If the IPI races and the task has been migrated
* to another CPU then no harm is done and the purpose has been
* achieved as well.
*/
void kick_process(task_t *p)
{
int cpu;
preempt_disable();
cpu = task_cpu(p);
if ((cpu != smp_processor_id()) && task_curr(p))
smp_send_reschedule(cpu);
preempt_enable();
}
/*
* Return a low guess at the load of a migration-source cpu.