forked from XuyangBai/PointDSC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_KITTI.py
205 lines (183 loc) · 9.55 KB
/
test_KITTI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import json
import sys
import argparse
import logging
import torch
import numpy as np
import importlib
import open3d as o3d
from tqdm import tqdm
from easydict import EasyDict as edict
from libs.loss import TransformationLoss, ClassificationLoss
from datasets.KITTI import KITTIDataset
from datasets.dataloader import get_dataloader
from utils.pointcloud import make_point_cloud
from evaluation.benchmark_utils import set_seed, icp_refine
from utils.timer import Timer
set_seed()
def eval_KITTI_per_pair(model, dloader, config, use_icp):
"""
Evaluate our model on KITTI testset.
"""
num_pair = dloader.dataset.__len__()
# 0.success, 1.RE, 2.TE, 3.input inlier number, 4.input inlier ratio, 5. output inlier number
# 6. output inlier precision, 7. output inlier recall, 8. output inlier F1 score 9. model_time, 10. data_time 11. scene_ind
stats = np.zeros([num_pair, 12])
dloader_iter = dloader.__iter__()
class_loss = ClassificationLoss()
evaluate_metric = TransformationLoss(re_thre=config.re_thre, te_thre=config.te_thre)
data_timer, model_timer = Timer(), Timer()
with torch.no_grad():
for i in tqdm(range(num_pair)):
#################################
# load data
#################################
data_timer.tic()
corr, src_keypts, tgt_keypts, gt_trans, gt_labels = dloader_iter.next()
corr, src_keypts, tgt_keypts, gt_trans, gt_labels = \
corr.cuda(), src_keypts.cuda(), tgt_keypts.cuda(), gt_trans.cuda(), gt_labels.cuda()
data = {
'corr_pos': corr,
'src_keypts': src_keypts,
'tgt_keypts': tgt_keypts,
'testing': True,
}
data_time = data_timer.toc()
#################################
# forward pass
#################################
model_timer.tic()
res = model(data)
pred_trans, pred_labels = res['final_trans'], res['final_labels']
if args.solver == 'SVD':
pass
elif args.solver == 'RANSAC':
# our method can be used with RANSAC as a outlier pre-filtering step.
src_pcd = make_point_cloud(src_keypts[0].detach().cpu().numpy())
tgt_pcd = make_point_cloud(tgt_keypts[0].detach().cpu().numpy())
corr = np.array([np.arange(src_keypts.shape[1]), np.arange(src_keypts.shape[1])])
pred_inliers = np.where(pred_labels.detach().cpu().numpy() > 0)[1]
corr = o3d.utility.Vector2iVector(corr[:, pred_inliers].T)
reg_result = o3d.registration.registration_ransac_based_on_correspondence(
src_pcd, tgt_pcd, corr,
max_correspondence_distance=config.inlier_threshold,
estimation_method=o3d.registration.TransformationEstimationPointToPoint(False),
ransac_n=3,
criteria=o3d.registration.RANSACConvergenceCriteria(max_iteration=5000, max_validation=5000)
)
inliers = np.array(reg_result.correspondence_set)
pred_labels = torch.zeros_like(gt_labels)
pred_labels[0, inliers[:, 0]] = 1
pred_trans = torch.eye(4)[None].to(src_keypts.device)
pred_trans[:, :4, :4] = torch.from_numpy(reg_result.transformation)
if use_icp:
pred_trans = icp_refine(src_keypts, tgt_keypts, pred_trans)
model_time = model_timer.toc()
class_stats = class_loss(pred_labels, gt_labels)
loss, recall, Re, Te, rmse = evaluate_metric(pred_trans, gt_trans, src_keypts, tgt_keypts, pred_labels)
pred_trans = pred_trans[0]
# save statistics
stats[i, 0] = float(recall / 100.0) # success
stats[i, 1] = float(Re) # Re (deg)
stats[i, 2] = float(Te) # Te (cm)
stats[i, 3] = int(torch.sum(gt_labels)) # input inlier number
stats[i, 4] = float(torch.mean(gt_labels.float())) # input inlier ratio
stats[i, 5] = int(torch.sum(gt_labels[pred_labels > 0])) # output inlier number
stats[i, 6] = float(class_stats['precision']) # output inlier precision
stats[i, 7] = float(class_stats['recall']) # output inlier recall
stats[i, 8] = float(class_stats['f1']) # output inlier f1 score
stats[i, 9] = model_time
stats[i, 10] = data_time
stats[i, 11] = -1
if recall == 0:
from evaluation.benchmark_utils import rot_to_euler
R_gt, t_gt = gt_trans[0][:3, :3], gt_trans[0][:3, -1]
euler = rot_to_euler(R_gt.detach().cpu().numpy())
input_ir = float(torch.mean(gt_labels.float()))
input_i = int(torch.sum(gt_labels))
output_i = int(torch.sum(gt_labels[pred_labels > 0]))
logging.info(f"Pair {i}, GT Rot: {euler[0]:.2f}, {euler[1]:.2f}, {euler[2]:.2f}, Trans: {t_gt[0]:.2f}, {t_gt[1]:.2f}, {t_gt[2]:.2f}, RE: {float(Re):.2f}, TE: {float(Te):.2f}")
logging.info((f"\tInput Inlier Ratio :{input_ir*100:.2f}%(#={input_i}), Output: IP={float(class_stats['precision'])*100:.2f}%(#={output_i}) IR={float(class_stats['recall'])*100:.2f}%"))
return stats
def eval_KITTI(model, config, use_icp):
dset = KITTIDataset(root='/data/KITTI',
split='test',
descriptor=config.descriptor,
in_dim=config.in_dim,
inlier_threshold=config.inlier_threshold,
num_node=12000,
use_mutual=config.use_mutual,
augment_axis=0,
augment_rotation=0.00,
augment_translation=0.0,
)
dloader = get_dataloader(dset, batch_size=1, num_workers=16, shuffle=False)
stats = eval_KITTI_per_pair(model, dloader, config, use_icp)
logging.info(f"Max memory allicated: {torch.cuda.max_memory_allocated() / 1024 ** 3:.2f}GB")
# pair level average
allpair_stats = stats
allpair_average = allpair_stats.mean(0)
correct_pair_average = allpair_stats[allpair_stats[:, 0] == 1].mean(0)
logging.info(f"*"*40)
logging.info(f"All {allpair_stats.shape[0]} pairs, Mean Success Rate={allpair_average[0]*100:.2f}%, Mean Re={correct_pair_average[1]:.2f}, Mean Te={correct_pair_average[2]:.2f}")
logging.info(f"\tInput: Mean Inlier Num={allpair_average[3]:.2f}(ratio={allpair_average[4]*100:.2f}%)")
logging.info(f"\tOutput: Mean Inlier Num={allpair_average[5]:.2f}(precision={allpair_average[6]*100:.2f}%, recall={allpair_average[7]*100:.2f}%, f1={allpair_average[8]*100:.2f}%)")
logging.info(f"\tMean model time: {allpair_average[9]:.2f}s, Mean data time: {allpair_average[10]:.2f}s")
return allpair_stats
if __name__ == '__main__':
from config import str2bool
parser = argparse.ArgumentParser()
parser.add_argument('--chosen_snapshot', default='', type=str, help='snapshot dir')
parser.add_argument('--solver', default='SVD', type=str, choices=['SVD', 'RANSAC'])
parser.add_argument('--use_icp', default=False, type=str2bool)
parser.add_argument('--save_npz', default=False, type=str2bool)
args = parser.parse_args()
if args.use_icp:
log_filename = f'logs/{args.chosen_snapshot}-{args.solver}-ICP.log'
else:
log_filename = f'logs/{args.chosen_snapshot}-{args.solver}.log'
logging.basicConfig(level=logging.INFO,
filename=log_filename,
filemode='a',
format="")
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
# config_path = f'snapshot/{args.chosen_snapshot}/config.json'
config_path = f'snapshot/PointDSC_KITTI_release/config.json'
config = json.load(open(config_path, 'r'))
config = edict(config)
## in case test the generalization ability of model trained on 3DMatch
config.inlier_threshold = 0.6
config.sigma_d = 1.2
config.re_thre = 5
config.te_thre = 60
config.descriptor = 'fcgf'
## dynamically load the model from snapshot
# module_file_path = f'snapshot/{args.chosen_snapshot}/model.py'
# module_name = 'model'
# module_spec = importlib.util.spec_from_file_location(module_name, module_file_path)
# module = importlib.util.module_from_spec(module_spec)
# module_spec.loader.exec_module(module)
# PointDSC = module.PointDSC
# load from models/PointDSC.py
from models.PointDSC import PointDSC
model = PointDSC(
in_dim=config.in_dim,
num_layers=config.num_layers,
num_channels=config.num_channels,
num_iterations=config.num_iterations,
ratio=config.ratio,
inlier_threshold=config.inlier_threshold,
sigma_d=config.sigma_d,
k=config.k,
nms_radius=config.inlier_threshold,
)
# miss = model.load_state_dict(torch.load(f'snapshot/{args.chosen_snapshot}/models/model_best.pkl'), strict=False)
miss = model.load_state_dict(torch.load(f'snapshot/PointDSC_KITTI_release/models/model_best.pkl'), strict=False)
print(miss)
model.eval()
# evaluate on the test set
stats = eval_KITTI(model.cuda(), config, args.use_icp)
if args.save_npz:
save_path = log_filename.replace('.log', '.npy')
np.save(save_path, stats)
print(f"Save the stats in {save_path}")