forked from micropython/micropython
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathled.c
393 lines (338 loc) · 12.1 KB
/
led.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2016 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/nlr.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "genhdr/pins.h"
#if defined(MICROPY_HW_LED1)
/// \moduleref pyb
/// \class LED - LED object
///
/// The LED object controls an individual LED (Light Emitting Diode).
// the default is that LEDs are not inverted, and pin driven high turns them on
#ifndef MICROPY_HW_LED_INVERTED
#define MICROPY_HW_LED_INVERTED (0)
#endif
typedef struct _pyb_led_obj_t {
mp_obj_base_t base;
mp_uint_t led_id;
const pin_obj_t *led_pin;
} pyb_led_obj_t;
STATIC const pyb_led_obj_t pyb_led_obj[] = {
{{&pyb_led_type}, 1, &MICROPY_HW_LED1},
#if defined(MICROPY_HW_LED2)
{{&pyb_led_type}, 2, &MICROPY_HW_LED2},
#if defined(MICROPY_HW_LED3)
{{&pyb_led_type}, 3, &MICROPY_HW_LED3},
#if defined(MICROPY_HW_LED4)
{{&pyb_led_type}, 4, &MICROPY_HW_LED4},
#endif
#endif
#endif
};
#define NUM_LEDS MP_ARRAY_SIZE(pyb_led_obj)
void led_init(void) {
/* GPIO structure */
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure I/O speed, mode, output type and pull */
GPIO_InitStructure.Speed = GPIO_SPEED_LOW;
GPIO_InitStructure.Mode = MICROPY_HW_LED_OTYPE;
GPIO_InitStructure.Pull = GPIO_NOPULL;
/* Turn off LEDs and initialize */
for (int led = 0; led < NUM_LEDS; led++) {
const pin_obj_t *led_pin = pyb_led_obj[led].led_pin;
mp_hal_gpio_clock_enable(led_pin->gpio);
MICROPY_HW_LED_OFF(led_pin);
GPIO_InitStructure.Pin = led_pin->pin_mask;
HAL_GPIO_Init(led_pin->gpio, &GPIO_InitStructure);
}
}
#if defined(MICROPY_HW_LED1_PWM) \
|| defined(MICROPY_HW_LED2_PWM) \
|| defined(MICROPY_HW_LED3_PWM) \
|| defined(MICROPY_HW_LED4_PWM)
// The following is semi-generic code to control LEDs using PWM.
// It currently supports TIM1, TIM2 and TIM3, channels 1-4.
// Configure by defining the relevant MICROPY_HW_LEDx_PWM macros in mpconfigboard.h.
// If they are not defined then PWM will not be available for that LED.
#define LED_PWM_ENABLED (1)
#ifndef MICROPY_HW_LED1_PWM
#define MICROPY_HW_LED1_PWM { NULL, 0, 0, 0 }
#endif
#ifndef MICROPY_HW_LED2_PWM
#define MICROPY_HW_LED2_PWM { NULL, 0, 0, 0 }
#endif
#ifndef MICROPY_HW_LED3_PWM
#define MICROPY_HW_LED3_PWM { NULL, 0, 0, 0 }
#endif
#ifndef MICROPY_HW_LED4_PWM
#define MICROPY_HW_LED4_PWM { NULL, 0, 0, 0 }
#endif
#define LED_PWM_TIM_PERIOD (10000) // TIM runs at 1MHz and fires every 10ms
// this gives the address of the CCR register for channels 1-4
#define LED_PWM_CCR(pwm_cfg) ((volatile uint32_t*)&(pwm_cfg)->tim->CCR1 + ((pwm_cfg)->tim_channel >> 2))
typedef struct _led_pwm_config_t {
TIM_TypeDef *tim;
uint8_t tim_id;
uint8_t tim_channel;
uint8_t alt_func;
} led_pwm_config_t;
STATIC const led_pwm_config_t led_pwm_config[] = {
MICROPY_HW_LED1_PWM,
MICROPY_HW_LED2_PWM,
MICROPY_HW_LED3_PWM,
MICROPY_HW_LED4_PWM,
};
STATIC uint8_t led_pwm_state = 0;
static inline bool led_pwm_is_enabled(int led) {
return (led_pwm_state & (1 << led)) != 0;
}
// this function has a large stack so it should not be inlined
STATIC void led_pwm_init(int led) __attribute__((noinline));
STATIC void led_pwm_init(int led) {
const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1];
// GPIO configuration
GPIO_InitTypeDef gpio_init;
gpio_init.Pin = led_pin->pin_mask;
gpio_init.Mode = GPIO_MODE_AF_PP;
gpio_init.Speed = GPIO_SPEED_FAST;
gpio_init.Pull = GPIO_NOPULL;
gpio_init.Alternate = pwm_cfg->alt_func;
HAL_GPIO_Init(led_pin->gpio, &gpio_init);
// TIM configuration
switch (pwm_cfg->tim_id) {
case 1: __TIM1_CLK_ENABLE(); break;
case 2: __TIM2_CLK_ENABLE(); break;
case 3: __TIM3_CLK_ENABLE(); break;
default: assert(0);
}
TIM_HandleTypeDef tim;
tim.Instance = pwm_cfg->tim;
tim.Init.Period = LED_PWM_TIM_PERIOD - 1;
tim.Init.Prescaler = timer_get_source_freq(pwm_cfg->tim_id) / 1000000 - 1; // TIM runs at 1MHz
tim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
tim.Init.CounterMode = TIM_COUNTERMODE_UP;
tim.Init.RepetitionCounter = 0;
HAL_TIM_PWM_Init(&tim);
// PWM configuration
TIM_OC_InitTypeDef oc_init;
oc_init.OCMode = TIM_OCMODE_PWM1;
oc_init.Pulse = 0; // off
oc_init.OCPolarity = MICROPY_HW_LED_INVERTED ? TIM_OCPOLARITY_LOW : TIM_OCPOLARITY_HIGH;
oc_init.OCFastMode = TIM_OCFAST_DISABLE;
oc_init.OCNPolarity = TIM_OCNPOLARITY_HIGH; // needed for TIM1 and TIM8
oc_init.OCIdleState = TIM_OCIDLESTATE_SET; // needed for TIM1 and TIM8
oc_init.OCNIdleState = TIM_OCNIDLESTATE_SET; // needed for TIM1 and TIM8
HAL_TIM_PWM_ConfigChannel(&tim, &oc_init, pwm_cfg->tim_channel);
HAL_TIM_PWM_Start(&tim, pwm_cfg->tim_channel);
// indicate that this LED is using PWM
led_pwm_state |= 1 << led;
}
STATIC void led_pwm_deinit(int led) {
// make the LED's pin a standard GPIO output pin
const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
GPIO_TypeDef *g = led_pin->gpio;
uint32_t pin = led_pin->pin;
static const int mode = 1; // output
static const int alt = 0; // no alt func
g->MODER = (g->MODER & ~(3 << (2 * pin))) | (mode << (2 * pin));
g->AFR[pin >> 3] = (g->AFR[pin >> 3] & ~(15 << (4 * (pin & 7)))) | (alt << (4 * (pin & 7)));
led_pwm_state &= ~(1 << led);
}
#else
#define LED_PWM_ENABLED (0)
#endif
void led_state(pyb_led_t led, int state) {
if (led < 1 || led > NUM_LEDS) {
return;
}
const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
//printf("led_state(%d,%d)\n", led, state);
if (state == 0) {
// turn LED off
MICROPY_HW_LED_OFF(led_pin);
} else {
// turn LED on
MICROPY_HW_LED_ON(led_pin);
}
#if LED_PWM_ENABLED
if (led_pwm_is_enabled(led)) {
led_pwm_deinit(led);
}
#endif
}
void led_toggle(pyb_led_t led) {
if (led < 1 || led > NUM_LEDS) {
return;
}
#if LED_PWM_ENABLED
if (led_pwm_is_enabled(led)) {
// if PWM is enabled then LED has non-zero intensity, so turn it off
led_state(led, 0);
return;
}
#endif
// toggle the output data register to toggle the LED state
const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
led_pin->gpio->ODR ^= led_pin->pin_mask;
}
int led_get_intensity(pyb_led_t led) {
if (led < 1 || led > NUM_LEDS) {
return 0;
}
#if LED_PWM_ENABLED
if (led_pwm_is_enabled(led)) {
const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1];
mp_uint_t i = (*LED_PWM_CCR(pwm_cfg) * 255 + LED_PWM_TIM_PERIOD - 2) / (LED_PWM_TIM_PERIOD - 1);
if (i > 255) {
i = 255;
}
return i;
}
#endif
const pin_obj_t *led_pin = pyb_led_obj[led - 1].led_pin;
GPIO_TypeDef *gpio = led_pin->gpio;
if (gpio->ODR & led_pin->pin_mask) {
// pin is high
return MICROPY_HW_LED_INVERTED ? 0 : 255;
} else {
// pin is low
return MICROPY_HW_LED_INVERTED ? 255 : 0;
}
}
void led_set_intensity(pyb_led_t led, mp_int_t intensity) {
#if LED_PWM_ENABLED
if (intensity > 0 && intensity < 255) {
const led_pwm_config_t *pwm_cfg = &led_pwm_config[led - 1];
if (pwm_cfg->tim != NULL) {
// set intensity using PWM pulse width
if (!led_pwm_is_enabled(led)) {
led_pwm_init(led);
}
*LED_PWM_CCR(pwm_cfg) = intensity * (LED_PWM_TIM_PERIOD - 1) / 255;
return;
}
}
#endif
// intensity not supported for this LED; just turn it on/off
led_state(led, intensity > 0);
}
void led_debug(int n, int delay) {
led_state(1, n & 1);
led_state(2, n & 2);
led_state(3, n & 4);
led_state(4, n & 8);
HAL_Delay(delay);
}
/******************************************************************************/
/* Micro Python bindings */
void led_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_led_obj_t *self = self_in;
mp_printf(print, "LED(%lu)", self->led_id);
}
/// \classmethod \constructor(id)
/// Create an LED object associated with the given LED:
///
/// - `id` is the LED number, 1-4.
STATIC mp_obj_t led_obj_make_new(const mp_obj_type_t *type, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// get led number
mp_int_t led_id = mp_obj_get_int(args[0]);
// check led number
if (!(1 <= led_id && led_id <= NUM_LEDS)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "LED(%d) does not exist", led_id));
}
// return static led object
return (mp_obj_t)&pyb_led_obj[led_id - 1];
}
/// \method on()
/// Turn the LED on.
mp_obj_t led_obj_on(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_state(self->led_id, 1);
return mp_const_none;
}
/// \method off()
/// Turn the LED off.
mp_obj_t led_obj_off(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_state(self->led_id, 0);
return mp_const_none;
}
/// \method toggle()
/// Toggle the LED between on and off.
mp_obj_t led_obj_toggle(mp_obj_t self_in) {
pyb_led_obj_t *self = self_in;
led_toggle(self->led_id);
return mp_const_none;
}
/// \method intensity([value])
/// Get or set the LED intensity. Intensity ranges between 0 (off) and 255 (full on).
/// If no argument is given, return the LED intensity.
/// If an argument is given, set the LED intensity and return `None`.
mp_obj_t led_obj_intensity(mp_uint_t n_args, const mp_obj_t *args) {
pyb_led_obj_t *self = args[0];
if (n_args == 1) {
return mp_obj_new_int(led_get_intensity(self->led_id));
} else {
led_set_intensity(self->led_id, mp_obj_get_int(args[1]));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(led_obj_intensity_obj, 1, 2, led_obj_intensity);
STATIC const mp_map_elem_t led_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_on), (mp_obj_t)&led_obj_on_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_off), (mp_obj_t)&led_obj_off_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_toggle), (mp_obj_t)&led_obj_toggle_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_intensity), (mp_obj_t)&led_obj_intensity_obj },
};
STATIC MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table);
const mp_obj_type_t pyb_led_type = {
{ &mp_type_type },
.name = MP_QSTR_LED,
.print = led_obj_print,
.make_new = led_obj_make_new,
.locals_dict = (mp_obj_t)&led_locals_dict,
};
#else
// For boards with no LEDs, we leave an empty function here so that we don't
// have to put conditionals everywhere.
void led_init(void) {
}
void led_state(pyb_led_t led, int state) {
}
void led_toggle(pyb_led_t led) {
}
#endif // defined(MICROPY_HW_LED1)