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The Algorithm

Get near to a minimum x* / close to the optimal value f(x*)?

(Assumptions: f : R? — R convex, differentiable, has a global minimum x*)

Goal: Find x € R? such that
f(x) = f(x") <e.

Note that there can be several minima x7 # x5 with f(x]) = f(x3).

Iterative Algorithm:
X1 = X¢ — YV (%),

for timesteps ¢t = 0,1,..., and stepsize v > 0.
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Example

X0
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Vanilla analysis
How to bound f(x;) — f(x*) ?

» Abbreviate g; := V f(x¢), and consider (using the definition of gradient descent)

1
gtT(Xt —x) = ;(Xt - Xt+1)T(Xt —x¥).

» Apply 2vTw = ||[v||2 + ||w|?? — |[v—w]? to rewrite

1
g/ (xi—x*) = 2 (ke —xe1[” + e —x*[1* = [[xeq1 —x*|?)

0% 1
= §HgtH2 +5 (e =x*11* = [Ixe1—x*]%)

» Sum this up over the iterations ¢:

T—

T-1
g

>oel (xe—x") = Z !gtHer* (o =1 = [l —x*[|*)

t=0 t=0

Lo |
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Vanilla analysis, Il

> Now we invoke convexity of f with x = x;,y = x*:

flxe) = f(x*) < g/ (x¢ — x¥)

giving
T-1 1 T-1
(=) — 52 IIgt||2+*HXo - x|?,
t=0 t=0
an upper bound for the average error f(x;) — f(x*) over the steps

> last iterate is not necessarily the best one

» stepsize is crucial
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Lipschitz convex functions: O(1/¢?) steps

Assume that all gradients of f are bounded in norm.

» Equivalent to f being Lipschitz (Exercise 11).

Theorem

Let f: R? — R be convex and differentiable with a global minimum x*; furthermore,
suppose that ||xo — x*|| < R and ||V f(x)|| < B for all x. Choosing the stepsize

R
v BIT
gradient descent yields
T—1
1 N RB
il _ < =
T f(Xt) f(X ) = \/T

t=
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Lipschitz convex functions: O(1/¢?) steps, Il
Proof.

» Plug ||xo —x*|| < R and ||g¢|| < B into Vanilla Analysis II:

T-1

— 1
> (Flx) = f) < 2 S+ ol =P < LT +
t=0 t=0 Y
> choose ~ such that

2
7 p2 R
=BT+ —
a(v) =5 BT+ %

is minimized.
» Solving ¢'(v) = 0 yields the minimum ~ = \f and ¢(R/(BVT)) = RBVT.
» Dividing by T', the result follows.
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Lipschitz convex functions: O(1/¢?) steps, 11l

T R2B? RB

g2 T
Advantages:

» dimension-independent!

» holds for both average, or best iterate

In Practice:
What if we don’t know R and B?

— Exercise 13
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Smooth functions

“Not too curved”

Definition
Let f: RY — R be convex and differentiable. f is called smooth (with parameter
L>0)if

F9) < 169 + VI T(y =) + o lx -yl xy €RY

Definition does not require convexity (useful later)
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Smooth functions: O(1/¢) steps |

Smoothness: For any x, the graph of f is below a not;t/oo—steep tangential paraboloid

at (x, f(x)): /
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Smooth functions: O(1/¢) steps

» Quadratic functions are smooth (Exercise 11)

» Operations that preserve smoothness:

Lemma (Exercise 14)

(i) Let fi, fa,..., fm be convex functions that are smooth with parameters
Li,Lo,..., Ly, and let A1, Aa, ..., Ay € Ry. Then the convex function
f=>""1 Nifi is smooth with parameter ) " | X\;L;.

(ii) Let f be convex and smooth with parameter L, and let g(x) = Ax + b, for
A e R¥™™ and b € R Then the convex function f o g is smooth with parameter
LAl

2 where
| Ax||

Al = max
o ]

is the 2-norm (or spectral norm) of A.
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Smooth vs Lipschitz

» Bounded gradients < Lipschitz continuity of f
» Smoothness < Lipschitz continuity of V f (in the convex case).

Lemma

Let f:R? — R be convex and differentiable. The following two statements are
equivalent.

(i) f is smooth with parameter L.
(i) IVf(x) = V() < Lix - yll for all x,y € R”.

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.
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http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

Sufficient decrease

Lemma

Let f: R? — R be differentiable and smooth with parameter L. With

1
’7'_ L7

gradient descent satisfies

Flxn) < Fx0) — 5= IVFGI, 120

Note: More specifically, this already holds if f is smooth with parameter L over the
line segment connecting x; and X4 1.
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Smooth convex functions: O(1/¢) steps

Theorem

Let f: R? — R be convex and differentiable with a global minimum x*; furthermore,
suppose that f is smooth with parameter L. Choosing stepsize

1
’Y T L7
gradient descent yields

Flxr) — FO) < oellxo — X, T >0
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Smooth convex functions: O(1/¢) steps Il
fxr) = F') < gllxo = X2, T > 0.

Proof.
Vanilla Analysis |l:

T

I
~
—

(f(xe) = f(x9)) <

B2

1
IVF(xo)ll? + o llxo — x|
t 2,7

Il
o

t

Il
o

This time, we can bound the squared gradients by sufficient decrease:

~
~

IVFOI? < Y (f(xe) = f(xe41)) = f(x0) = f(x1).

t

1

2L
t

Il
o
Il
=)
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Smooth convex functions: O(1/¢) steps Il
Putting it together with v =1/L:

T—1 = I
D () = Fx) < o7 D IVFG)IP + 5 llxo — x|
t=0 t=0

IN

) — Fer) + 5 o — x|

Rewriting:

M=

(F6) = F6)) < 5 llxo = I

t=1

As last iterate is the best

—~

sufficient decrease!):

* 1 d * L * (12
flxr) = f(x") < Do (fx) = f(x) | < oo = x*|%.

t=1
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Smooth convex functions: O(1/¢) steps IV

R? := ||xo — x*||%.

R%L

L
T>—"= = < —R’<c:.
> error_2T <e

2e

» 50 - R?L iterations for error 0.01 ...
» ...as opposed to 10,000 - R?B? in the Lipschitz case

In Practice:
What if we don't know the smoothness parameter L7

— Exercise 15
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