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Projecting onto /;-balls

d
X = By(R) := {x eR:lxlh =3 Jail < R}
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EPFL Machine Learning and Optimization Laboratory 2 facets 2/33



Projecting onto /;-balls

Theorem

Let v e RY Re€ Ry, X = Bi(R) the {1-ball around 0 of radius R. The projection

IIx(v) = argmin ||x — v||?
xeX

of v onto Bi(R) can be computed in time O(dlogd).

This can be improved to time O(d) by avoiding sorting.
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Section 3.6

Proximal Gradient Descent

EPFL Machine Learning and Optimization Laboratory

4/33



Composite optimization problems

Consider objective functions composed as

f(x) = g(x) + h(x)

where g is a “nice” function, where as h is a “simple” additional term, which however
doesn't satisfy the assumptions of niceness which we used in the convergence analysis
so far.

In particular, an important case is when h is not differentiable.
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Idea

The classical gradient step for minimizing g:

1

: T 2

Xp1 = argmin g(x;) + Vg(xi) (v —x¢) + ley — x|
y

For the stepsize v := %

formed by the smoothness property with parameter L.

it exactly minimizes the local quadratic model of g at our current iterate xy,

Now for f = g + h, keep the same for g, and add A unmodified.

. 1
X1 =argmin g(x) + Vg(x) ' (y — x¢) + gHy —x¢|* + h(y)
Yy

1
=argmin —[ly — (x¢ = 7Vg(x0)|* + h(y)
Yy i

the proximal gradient descent update.
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The proximal gradient descent algorithm
An iteration of proximal gradient descent is defined as
Xt41 = proxy, . (x¢ — YVg(xt)) -

where the proximal mapping for a given function h, and parameter ~v > 0 is defined as

. 1
proxy . (z) := argmin {Q—Hy —z|* + h(y)} .
y g

The update step can be equivalently written as
Xep1 = Xt — VG (X¢)

for Gp, 4(x) := %(x — proxy, (x — ’ng(x))) being the so called generalized gradient
of f.
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A generalization of gradient descent?

» h = 0: recover gradient descent

» h = ix: recover projected gradient descent!

Given a closed convex set X, the indicator function of the set X is given as the
convex function

LX:IE{d—HRU—i-oo

{0 if x € X,
X = Lx(X) =

+o00  otherwise.

Proximal mapping becomes

1 .
proxy, - (z) := argmin {2—||y —z|* + Lx(y)} = argmin [ly — z|*
Yy v yeX
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Convergence in O(1/¢) steps, and applications

Same convergence as vanilla case for smooth functions, but now for any h.

Cost: gradient step, plus computing the proximal mapping

Examples:

» (i-norm, g =|.|I1
proxy, . (z) is soft thresholding operator, cost O(dlogd)

» Matrix nuclear norm, g =||.||«
proxy, . (Z) is singular value thresholding operator, costs same as SVD
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Chapter 4

Subgradient Descent
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Subgradients
What if f is not differentiable?

Definition
g € R% is a subgradient of f at x if
f(y) Zf(X)+gT(y—x) for all y € dom(f)

f(z)

fz1) + gf(x — 561)
\ F(@2) + g5 (@ — @2)
/7 F(w2) + g5 (@ — )

:fl Ilfg

df(x) C R? is the subdifferential, the set of subgradients of f at x.
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Subgradients |1

Example:

Yy

fy) > gy y—=—2y

Subgradient condition at z = 0: f(y) > f(0) + g(y — 0) = gy.
2/(0) = [-1,1]
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Subgradients 1|

Lemma (Exercise 23)

If f:dom(f) — R is differentiable at x € dom(f), then 0f(x) C {Vf(x)}.

Either exactly one subgradient Vf(x)... ...or no subgradient at all.

|
I
I
I
I
:
x y
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Subgradient characterization of convexity
“convex = subgradients everywhere”

Lemma (Exercise 24)

A function f : dom(f) — R is convex if and only if dom(f) is convex and 0 f(x) # ()
for all x € dom(f).

f(x)

f(z1) + gf(a: — 301)
) /,f(wz) + g5 (z — x2)
J (@) g5 (x — x2)

:ﬁl :ﬁg
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Convex and Lipschitz = bounded subgradients

Lemma (Exercise 25)

Let f: dom(f) — R be convex, dom(f) open, B € Ry. Then the following two
statements are equivalent.

(i) |lgll < B for all x € dom(f) and all g € 0f(x).
(i) [f(x) = f(y)| < Bllx —yl| for all x,y € dom(f).
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Subgradient optimality condition

Lemma

Suppose that f: dom(f) — R and x € dom(f). If0 € Jf(x), then x is a global
minimum.

Proof.
By definition of subgradients, g = 0 € 9 f(x) gives

fy) = fx) +g'(y —x) = f(x)

for all y € dom(f), so x is a global minimum. O
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Differentiability of convex functions
How “wild” can a non-differentiable convex function be?

Weierstrass function: a function that is continuous everywhere but differentiable
nowhere

https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg
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Differentiability of convex functions

Theorem ([Roc97, Theorem 25.5])

A convex function f : dom(f) — R is differentiable almost everywhere.
In other words:

» Set of points where f is non-differentiable has measure 0 (no volume).

» For all x € dom(f) and all € > 0, there is a point x’ such that ||x — x| < ¢ and
f is differentiable at x'.
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The subgradient descent algorithm

Subgradient descent: choose xy € R®.

Let g: € Of (xt)

Xt+1 = Xt — V8t

for times t = 0,1, ..., and stepsizes y; > 0.

Stepsize can vary with timel!

This is possible in (projected) gradient descent as well.
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Lipschitz convex functions: O(1/¢?) steps
Theorem

Let f:R? — R be convex and B-Lipschitz continuous with a global minimum x*;
furthermore, suppose that ||xg — x*|| < R. Choosing the constant stepsize

subgradient descent yields

1=
T
t—

—

fx) = f(x7) <

S

Proof is identical to the one of Theorem 2.1, except. ..

» In vanilla analyis, now use g; € df(x;) instead of g, = V f(xy).
» Inequality f(x;) — f(x*) < g/ (x; — x*) now follows from subgradient property
instead of first-order charaterization of convexity.
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