Skip to content

Secure Multi-Party Computation (MPC) with Go. This project implements secure two-party computation with Garbled circuit protocol.

License

Notifications You must be signed in to change notification settings

markkurossi/mpc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mpc

Secure Multi-Party Computation with Go. This project implements secure two-party computation with Garbled circuit protocol. The main components are:

  • ot: oblivious transfer library
  • circuit: garbled circuit parser, garbler, and evaluator
  • compiler: Multi-Party Computation Language (MPCL) compiler

Getting started

The easiest way to experiment with the system is to compile the garbled application and use it to evaluate programs. The garbled application takes the following command line options:

  • -e: specifies circuit evaluator / garbler mode. The circuit evaluator creates a TCP listener and waits for garblers to connect with computation.
  • -i: specifies comma-separated input values for the circuit.
  • -v: enabled verbose output.

The examples directory contains various MPCL example programs which can be executed with the garbled application. For example, here's how you can run the Yao's Millionaires' Problem which can be found from the millionaire.mpcl file:

package main

func main(a, b int64) bool {
    if a > b {
        return true
    } else {
        return false
    }
}

First, start the evaluator (these examples are run in the apps/garbled directory):

$ ./garbled -e -i 800000 examples/millionaire.mpcl
Circuit: #gates=262 (XOR=132 XNOR=64 AND=65 OR=0 INV=1)
 - N1: a{1,0}i64:int64
 + N2: b{1,0}i64:int64
 - N3: %_{0,1}b1:bool1
 - In: [800000]
Listening for connections at :8080

The evaluator's input is 800000 and it is set to the circuit inputs N2. The evaluator is now waiting for garblers to connect to the TCP port :8080.

Next, let's start the garbler:

$ ./garbled -i 750000,0 examples/millionaire.mpcl
Circuit: #gates=262 (XOR=132 XNOR=64 AND=65 OR=0 INV=1)
 + N1: a{1,0}i64:int64
 - N2: b{1,0}i64:int64
 - N3: %_{0,1}b1:bool1
 - In: [750000]
Result[0]: 0
Result[0]: 0b0
Result[0]: 0x00

The garbler's input is 750000 and it is set to the circuit inputs N1. The garbler connects to the evaluator's TCP port and they run the garbled circuit protocol. At the end, garbler (and evaluator) print the result of the circuit, which is this case is single bool value N3:

Result[0]: 0
Result[0]: 0b0
Result[0]: 0x00

In our example, the evaluator's argument N2 is bound to the MPCL program's b int64 argument, and garblers' N1 to a int64. Therefore, the result of the computation is false because N1=750000 <= N2=800000. If we increase the garbler's input to 900000, we see that the result is now true since the garbler's input is now bigger than the evaluator's input:

$ ./garbled -i 900000 examples/millionaire.mpcl
Circuit: #gates=262 (XOR=132 XNOR=64 AND=65 OR=0 INV=1)
 + N1: a{1,0}i64:int64
 - N2: b{1,0}i64:int64
 - N3: %_{0,1}b1:bool1
 - In: [900000]
Result[0]: 1
Result[0]: 0b1
Result[0]: 0x01

Multi-Party Computation Language (MPCL)

The multi-party computation language is heavily inspired by the Go programming language, however it is not using the Go's compiler or any other related components. The compiler is an independent implementation of the relevant parts of the Go syntax.

Syntax and parser

The parser parses the MPCL input files, including any referenced packages, and creates an abstract syntax tree (AST).

The AST is then converted into Static Single Assignment form (SSA) where each variable is defined and assigned only once. The SSA transformation does also type checks so that all variable assignments and function call arguments and return values are checked (or converted) to be or correct type.

Types

Name Size Signed
bool 1 no
uint unspecified no
int unspecified yes
uintN N no
intN N yes
floatN N yes
stringN N no

The unsized uint and int types can be used as function arguments and return values. Their are resolved during compilation time. The only exception is the main function. Its arguments must use fixed type sizes. The following example shows a MinMax function that returns the minimum and maximum arguments. This function works for all argument sizes.

func MinMax(a, b int) (int, int) {
    if a < b {
        return a, b
    } else {
        return b, a
    }
}

Builtin functions

The MPCL runtime defines the following builtin functions:

  • make(TYPE, SIZE): creates an instance of the type type with size bits.
  • native(NAME, ARG...): calls a builtin function name with arguments arg.... The name can specify a circuit file (*.circ) or one of the following builtin functions:
    • hamming(a, b uint) computes the bitwise hamming distance between argument values
  • size(VARIABLE): returns the bit size of the argument variable.

SSA (Static single assignment form)

package main

func main(a, b int4) int4 {
    if a > b {
        return a
    }
    return b
}

The compiler creates the following SSA form assembly:

# main#0:
l0:
        igt    a{1,0}i4 b{1,0}i4 %_{0,0}b1
        jump   l2
l2:
        if     %_{0,0}b1 l3
        jump   l4
l4:
        mov    b{1,0}i4 %ret0{1,2}i4
        jump   l1
# main.ret#0:
l1:
        phi    %_{0,0}b1 %ret0{1,1}i4 %ret0{1,2}i4 %_{0,1}i4
        ret    %_{0,1}i4
l3:
        mov    a{1,0}i4 %ret0{1,1}i4
        jump   l1

The SSA assembly (and logical circuit) form a Directed Acyclic Graph (DAG) without any mutable storage locations. This means that all alternative execution paths must be evaluate and when the program is returning its computation results, any conflicting values from different execution paths must be resolved with the branching condition. This value resolution is implemented as the phi assembly instruction, which effectively implements a MUX logical circuit:

O=(D0 XOR D1)C XOR D0
D0 D1 C D0 XOR D1 AND C XOR D0
0 0 0 0 0 0
0 1 0 1 0 0
1 0 0 1 0 1
1 1 0 0 0 1
0 0 1 0 0 0
0 1 1 1 1 1
1 0 1 1 1 0
1 1 1 0 0 1

Circuit generation

The 3rd compiler phase converts SSA form assembly into logic gate circuit. The following circuit was generated from the previous SSA form assembly:

TODO

  • Compiler:
    • Constant folding
      • binary expressions
      • if-blocks
      • For-loop unrolling
      • Function call and return
    • sort blocks in topological order
      • peephole optimization over block boundaries
    • Signed / unsigned arithmetics
    • unary expressions
      • logical not
    • BitShift
    • Binary serialization format for circuits
  • Circuit & garbling:
    • Row reduction
    • Half AND
    • Oblivious transfer extensions
  • Misc:
    • TLS for garbler-evaluator protocol
    • Session-specific circuit encryption key

Running benchmark: 32-bit RSA encryption (64-bit modp)

Circuit: #gates=7366376 (XOR=3146111 AND=3133757 OR=1032350 INV=54158)
┏━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃          Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃  10.72622192s ┃ 75.33% ┃       ┃
┃ Recv   ┃  2.501608027s ┃ 17.57% ┃ 364MB ┃
┃ Inputs ┃  232.257386ms ┃  1.63% ┃  41kB ┃
┃ Eval   ┃  778.170361ms ┃  5.47% ┃       ┃
┃ Result ┃     158.838µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 14.238416532s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Optimized full-adder:

Circuit: #gates=7366376 (XOR=5210811 AND=2101407 OR=0 INV=54158)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃   7.9561241s ┃ 76.09% ┃       ┃
┃ Recv   ┃ 1.660386022s ┃ 15.88% ┃ 199MB ┃
┃ Inputs ┃ 232.583145ms ┃  2.22% ┃  41kB ┃
┃ Eval   ┃ 606.479521ms ┃  5.80% ┃       ┃
┃ Result ┃    304.202µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 10.45587699s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Karatsuba multiplication algorithm:

Circuit: #gates=6822632 (XOR=4828475 XNOR=58368 AND=1874719 OR=0 INV=61070)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃ 6.672590283s ┃ 75.99% ┃       ┃
┃ Recv   ┃ 1.320621876s ┃ 15.04% ┃ 179MB ┃
┃ Inputs ┃ 231.659961ms ┃  2.64% ┃  41kB ┃
┃ Eval   ┃ 555.192105ms ┃  6.32% ┃       ┃
┃ Result ┃    298.855µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃  8.78036308s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Optimized INV-gates:

Circuit: #gates=6769820 (XOR=4836732 XNOR=58368 AND=1874719 OR=0 INV=1)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃ 6.338729612s ┃ 75.20% ┃       ┃
┃ Recv   ┃ 1.352880139s ┃ 16.05% ┃ 177MB ┃
┃ Inputs ┃  227.12815ms ┃  2.69% ┃  41kB ┃
┃ Eval   ┃ 509.574258ms ┃  6.05% ┃       ┃
┃ Result ┃    344.425µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 8.428656584s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Labels by value:

Circuit: #gates=6717340 (XOR=4787324 XNOR=108545 AND=1821471 OR=0 INV=0)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃ 6.117743762s ┃ 77.25% ┃       ┃
┃ Recv   ┃ 1.196140342s ┃ 15.10% ┃ 172MB ┃
┃ Inputs ┃ 236.647371ms ┃  2.99% ┃  41kB ┃
┃ Eval   ┃ 368.944904ms ┃  4.66% ┃       ┃
┃ Result ┃    347.483µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 7.919823862s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Labels by value in protocol, garbler, and evaluator:

┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃ 5.076677475s ┃ 78.67% ┃       ┃
┃ Recv   ┃ 940.758975ms ┃ 14.58% ┃ 143MB ┃
┃ Inputs ┃ 229.741398ms ┃  3.56% ┃  41kB ┃
┃ Eval   ┃ 205.513944ms ┃  3.18% ┃       ┃
┃ Result ┃    185.197µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 6.452876989s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Gate wires by value in garbler:

┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃  4.37061338s ┃ 76.48% ┃       ┃
┃ Recv   ┃  962.20669ms ┃ 16.84% ┃ 143MB ┃
┃ Inputs ┃ 229.360283ms ┃  4.01% ┃  41kB ┃
┃ Eval   ┃ 152.258636ms ┃  2.66% ┃       ┃
┃ Result ┃    162.316µs ┃  0.00% ┃   1kB ┃
┃ Total  ┃ 5.714601305s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Garbler keeping wires in an array instead of map:

Circuit: #gates=6717340 (XOR=4787324 XNOR=108545 AND=1821471 OR=0 INV=0)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃ 1.710655914s ┃ 53.63% ┃       ┃
┃ Recv   ┃ 1.088403425s ┃ 34.12% ┃ 143MB ┃
┃ Inputs ┃ 243.393526ms ┃  7.63% ┃  41kB ┃
┃ Eval   ┃ 146.879726ms ┃  4.61% ┃       ┃
┃ Result ┃      222.8µs ┃  0.01% ┃   1kB ┃
┃ Total  ┃ 3.189555391s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Pruning dead gates:

Circuit: #gates=5972956 (XOR=4315452 XNOR=53761 AND=1603743 OR=0 INV=0)
┏━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━┓
┃ Op     ┃         Time ┃      % ┃  Xfer ┃
┣━━━━━━━━╋━━━━━━━━━━━━━━╋━━━━━━━━╋━━━━━━━┫
┃ Wait   ┃  1.28140619s ┃ 55.30% ┃       ┃
┃ Recv   ┃ 676.432166ms ┃ 29.19% ┃ 126MB ┃
┃ Inputs ┃ 229.527559ms ┃  9.91% ┃  41kB ┃
┃ Eval   ┃ 129.623668ms ┃  5.59% ┃       ┃
┃ Result ┃    203.248µs ┃  0.01% ┃   1kB ┃
┃ Total  ┃ 2.317192831s ┃        ┃       ┃
┗━━━━━━━━┻━━━━━━━━━━━━━━┻━━━━━━━━┻━━━━━━━┛

Mathematic operations with compiler and optimized circuits

Optimized circuits from pkg/math/:

Implementation XOR gates AND gates % of circ
add64.circ 313 63
sub64.circ 442 63
mul64.circ 9707 4033
div64.circ 25328 4664
MPCL a+b 316 63 100
MPCL a-b 319 63 100
MPCL a*b 9304 4242 105.2
MPCL a/b 24833 8192 175.6

Develoment ideas

Mathematical operations

package main

func main(a, b int) (int, int) {
    q, r := a / b
    return q, r
}