-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathpartial_terms.py
584 lines (468 loc) · 23.2 KB
/
partial_terms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
###############################################################################
# partial_terms.py
# Calculate partial terms of the gradients and lml. In all functions here, we
# assume that the kernel expectations have already been computed.
# - w.r.t. Z, the inducing point locations.
# - w.r.t. alpha, the ARD hyperparameters
###############################################################################
import numpy as np
import numpy.linalg as linalg
from scipy import constants
import kernels
import kernel_exp
class partial_terms(object):
def __init__(self, Z, sf2, alpha, beta, M, Q, N, D, update_global_statistics=True):
'''
Init the calculation of partial terms
Args:
'''
# TODO: Take or assert M, Q, N, D from Z
self.Z = Z
self.M = M
self.Q = Q
self.N = N
self.D = D
self.beta = beta
self.hyp = kernels.ArdHypers(self.Q, sf=sf2**0.5, ard=alpha**-0.5)
self.kernel = kernels.rbf(self.Q, sf=self.hyp.sf, ard=self.hyp.ard)
if update_global_statistics:
self.update_global_statistics()
def set_data(self, Y, X_mu, X_S, is_set_statistics=True):
self.Y = Y
self.sum_YYT = np.sum(np.array([y.dot(y) for y in self.Y]), 0)
self.X_mu = X_mu
self.X_S = X_S
self.local_N = X_mu.shape[0]
self.exp_K_mi_K_im = np.zeros((self.local_N, self.M, self.M))
for i, (mu, s) in enumerate(zip(self.X_mu, self.X_S)):
self.exp_K_mi_K_im[i, :, :] = kernel_exp.calc_expect_K_mi_K_im(self.Z,
self.hyp, np.atleast_2d(mu), np.atleast_2d(s))
self.exp_K_mi = kernel_exp.calc_expect_K_mi(self.Z, self.hyp, self.X_mu, self.X_S)
if is_set_statistics:
self.update_local_statistics()
def set_local_statistics(self, sum_YYT, sum_exp_K_mi_K_im, exp_K_miY, sum_exp_K_ii, KL):
self.sum_YYT = sum_YYT
self.sum_exp_K_mi_K_im = sum_exp_K_mi_K_im
self.exp_K_miY = exp_K_miY
self.sum_exp_K_ii = sum_exp_K_ii
self.Kmm_plus_op_inv = linalg.inv(self.Kmm + self.beta*self.sum_exp_K_mi_K_im)
self.KL = KL
def get_local_statistics(self):
return {'sum_YYT' : self.sum_YYT,
'sum_exp_K_mi_K_im' : self.sum_exp_K_mi_K_im,
'exp_K_miY' : self.exp_K_miY,
'sum_exp_K_ii' : self.sum_exp_K_ii,
'KL' : self.KL}
def set_global_statistics(self, Kmm, Kmm_inv):
self.Kmm = Kmm
self.Kmm_inv = Kmm_inv
def update_local_statistics(self):
'''
Update statistics for when X_mu or X_S have changed
'''
self.kernel = kernels.rbf(self.Q, sf=self.hyp.sf, ard=self.hyp.ard)
self.sum_exp_K_mi_K_im = self.exp_K_mi_K_im.sum(0)
self.exp_K_miY = kernel_exp.calc_expect_K_mi_Y(self.Z, self.hyp, self.X_mu, self.X_S, self.Y)
self.sum_exp_K_ii = self.hyp.sf**2 * self.local_N
self.Kmm_plus_op_inv = linalg.inv(self.Kmm + self.beta*self.sum_exp_K_mi_K_im)
if not np.all(self.X_S == 0):
mu_ip = np.array([x.dot(x) for x in self.X_mu])
self.KL = 0.5 * np.sum(np.sum(self.X_S - np.log(self.X_S), 1) + mu_ip - self.Q)
else: # We have fixed embeddings
self.KL = 0
def update_global_statistics(self):
'''
Update statistics for when Z changes
'''
self.kernel = kernels.rbf(self.Q, sf=self.hyp.sf, ard=self.hyp.ard)
self.Kmm = self.kernel.K(self.Z)
self.Kmm_inv = linalg.inv(self.Kmm)
###############################################################################
# Partial gradients of F
###############################################################################
def dF_dKmm(self):
'''
dF_dKmm
Equations (5.7) & (5.46)
'''
dF_dKmm = ( 0.5*self.D*self.Kmm_inv +
-0.5*self.D*self.Kmm_plus_op_inv +
-0.5*self.beta*self.D*self.Kmm_inv.dot(self.sum_exp_K_mi_K_im.dot(self.Kmm_inv)) +
-0.5*self.beta**2*self.Kmm_plus_op_inv.dot(self.exp_K_miY.dot(self.exp_K_miY.T.dot(self.Kmm_plus_op_inv))))
return dF_dKmm
def dF_dexp_K_miY(self):
'''
dF_dexp_K_miY
Eqn (5.9), or in detail, (5.27)
'''
return self.beta**2*self.Kmm_plus_op_inv.dot(self.exp_K_miY)
def dF_dexp_K_mi_K_im(self):
'''
dF_dexp_K_mi_K_im
Eqn (5.10), or in detail, (5.35)
'''
return (-0.5*self.beta*self.D*self.Kmm_plus_op_inv +
0.5*self.beta*self.D*self.Kmm_inv +
-0.5*self.beta**3 * (self.Kmm_plus_op_inv.dot(
self.exp_K_miY.dot(self.exp_K_miY.T.dot(self.Kmm_plus_op_inv)))))
def dF_dexp_K_ii(self):
'''
dF_dexp_K_ii
Equations (5.7) & (5.46)
'''
return -0.5 * self.beta * self.D
###############################################################################
# grad_Z and necessary functions
# Calculating the gradient of Z takes a lot of separate steps. I've split these
# up into functions so they can all be individually tested.
###############################################################################
def dKmm_dZ(self):
'''
grad_Z_dKmm_dZ
Equation (5.49)
Returns:
MxQxM matrix. First two axes are the axes of Z, last indexes the
non-zero elements of the derivative matrix.
Status:
Finished
Tested
'''
alpha = 1.0 / self.hyp.ard**2
# import time
# t = time.time()
# res = np.zeros((self.M, self.Q, self.M))
# for j in xrange(self.M):
# for k in xrange(self.Q):
# for mp in xrange(self.M):
# res[j, k, mp] = self.kernel.K(self.Z[j, :], self.Z[mp, :])
# res[j, k, mp] *= -alpha[k]*(self.Z[j, k] - self.Z[mp, k])
# print time.time() - t
# t = time.time()
K = self.kernel.K(self.Z, self.Z)
res2 = K[:, None, :] * -alpha[None, :, None] * (self.Z[:, :, None] - self.Z.T[None, :, :])
# print time.time() - t
# assert np.sum(np.abs(res2 - res)) < 10**-12
return res2
def dexp_K_miY_dZ(self):
'''
grad_Z_dexp_K_miY_dZ
Calculates the gradient of exp_K_mi w.r.t Z. Eqn (5.51).
Eqn (5.9), (5.13) & (5.51)
Args:
Returns:
Status:
Confirmed correct by comparison to GPy.
'''
# Here, we're taking the derivative of exp_K_miY (2D matrix), with respect
# to Z (also a 2D matrix). The result should be a 4D matrix, BUT, only one
# vector will be non-zero. Therefore, we can summarise the whole result in
# 3D Matrix.
alpha = self.hyp.ard**-2
res = np.zeros((self.M, self.Q, self.D))
for j in range(self.M):
for k in range(self.Q):
n_factors = self.exp_K_mi[:, j] * alpha[k] * ((self.X_mu[:, k] - self.Z[j, k]) / (alpha[k] * self.X_S[:, k] + 1))
res[j, k, :] = n_factors.dot(self.Y)
return res
def dexp_K_mi_K_im_dZ(self):
'''
grad_Z_dexp_K_mi_K_im_dZ
Calculates the gradient of exp_K_mi_K_im w.r.t. Z. Eqn (5.52).
Eqn (5.10), (5.14) & (5.52)
Status:
Confirmed correct by comparison to GPy.
'''
alpha = self.hyp.ard**-2
# import time
#
# t = time.time()
# res = np.zeros((self.M, self.Q, self.M))
# # Need to sum over all input points
# for n, (mu, s) in enumerate(zip(self.X_mu, self.X_S)):
# # Now calculate each element of the output
# for j in xrange(self.M):
# for k in xrange(self.Q):
# res[j, k, :] += (self.exp_K_mi_K_im[n, j, :] *
# (-0.5*alpha[k]*(self.Z[j, k] - self.Z[:, k]) +
# 0.5*alpha[k]*(2*mu[k] - self.Z[j, k] - self.Z[:, k])/(2*alpha[k]*s[k] + 1) ))
# print(time.time() - t)
# t = time.time()
# res2 = np.sum( self.exp_K_mi_K_im[:, :, None, :] *
# (-0.5*alpha[None, :, None]*(self.Z[:, :, None] - self.Z.T[None, :, :]) +
# 0.5*alpha[None, :, None]*(2.*self.X_mu[:, None, :, None] - self.Z[:, :, None] - self.Z.T[None, :, :])/(2.*alpha[None, :, None]*self.X_S[:, None, :, None] + 1)) , 0)
res = np.zeros((self.M, self.Q, self.M))
for i in xrange(self.local_N):
res += (self.exp_K_mi_K_im[i, :, None, :] *
(-0.5*alpha[None, :, None]*(self.Z[:, :, None] - self.Z.T[None, :, :]) +
0.5*alpha[None, :, None]*(2.*self.X_mu[i, None, :, None] - self.Z[:, :, None] - self.Z.T[None, :, :])/(2.*alpha[None, :, None]*self.X_S[i, None, :, None] + 1)))
# print(time.time() - t)
# assert np.sum(np.abs(res - res2)) < 10**-13
return res
def grad_Z(self, dF_dKmm, dKmm_dZ, dF_dexp_K_miY, dexp_K_miY_dZ, dF_dexp_K_mi_K_im, dexp_K_mi_K_im_dZ):
# I think we need individual kernel_exp matrices here... So don't pass them
# through as a sum.
'''
grad_Z
Calculates the gradient of the log marginal likelihood w.r.t. Z.
Args:
Returns:
MxQ matrix of gradients of the log marginal likelihood.
'''
# dF to store the overall result
dF = np.zeros((self.M, self.Q))
# Sum all the constituent parts
for j in xrange(self.M):
for k in xrange(self.Q):
dKmm_dZjk = np.zeros((self.M, self.M))
dKmm_dZjk[j, :] = dKmm_dZ[j, k, :]
dKmm_dZjk[:, j] = dKmm_dZ[j, k, :]
# Contribution of (5.7) - Confirmed correct by comparison to GPy,
# though with errors up to 10**-5.
dF[j, k] += np.sum(dF_dKmm * dKmm_dZjk)
# Contribution of (5.9) - Confirmed correct by comparison to GPy.
dF[j, k] += np.sum(dF_dexp_K_miY[j, :] * dexp_K_miY_dZ[j, k, :])
# Contribution of (5.10) - Confirmed correct by comparison to GPy.
# Multiplied by 2 based on GPy implementation. GPy.kern.kern.
dF[j, k] += 2 * np.sum(dF_dexp_K_mi_K_im[j, :] * dexp_K_mi_K_im_dZ[j, k, :])
return dF
###############################################################################
# grad_alpha and necessary functions
###############################################################################
def dKmm_dalpha(self):
# Eqn (5.58)
dKmm_dalpha = np.zeros((self.Q, self.M, self.M))
for m in xrange(self.M):
for md in xrange(self.M):
dKmm_dalpha[:, m, md] = -0.5 * self.Kmm[m, md] * (self.Z[m, :] - self.Z[md, :])**2
return dKmm_dalpha
def dexp_K_miY_dalpha(self):
alpha = self.hyp.ard**-2
# Eqn (5.60)
dexp_K_miY_dalpha = np.zeros((self.Q, self.M, self.D))
for q in xrange(self.Q):
for i in xrange(self.local_N):
alphaS = alpha * self.X_S[i, :]
# Correct by comparison to GPy:()
v = -0.5 * self.exp_K_mi[i, :] * (((self.X_mu[i, q] - self.Z[:, q]) / (alphaS[q] + 1.0))**2.0 + self.X_S[i, q] / (alphaS[q] + 1.0))
dexp_K_miY_dalpha[q, :, :] += np.outer(v, self.Y[i, :])
# a_s = alpha[None, :, None, None] * self.X_S[:, :, None, None]
# res = np.sum((-0.5 * self.exp_K_mi[:, None, :, None] * (((self.X_mu[:, :, None, None] - self.Z.T[None, :, :, None] / (a_s + 1.0))**2.0 + self.X_S[:, :, None, None] / a_s))) * self.Y[:, None, None, :], 0)
return dexp_K_miY_dalpha
def dexp_K_mi_K_im_dalpha(self):
# import time
alpha = self.hyp.ard**-2
# Eqn (5.61)
# TODO: Can easily vectorise (m, md) loop. Verify this first, then refactor.
# timea = time.time()
# dexp_K_mi_K_im_dalpha = np.zeros((self.Q, self.M, self.M))
# for i in xrange(self.local_N):
# mu = self.X_mu[i, :]
# s = self.X_S[i, :]
# for q in xrange(self.Q):
# for m in xrange(self.M):
# for md in xrange(self.M):
# dexp_K_mi_K_im_dalpha[q, m, md] += (self.exp_K_mi_K_im[i, m, md] *
# (-0.25*(self.Z[m, q] - self.Z[md, q])**2 +
# -0.25*((2.*mu[q] - self.Z[m, q] - self.Z[md, q]) / (2.*alpha[q]*s[q] + 1.))**2. +
# -(s[q] / (2.*alpha[q]*s[q] + 1.)))
# )
# print (time.time() - timea)
# Test alternative calculation
# timec = time.time()
# dexp_K_mi_K_im_dalpha = np.sum(self.exp_K_mi_K_im[:, None, :, :] * (
# (-0.25*np.rollaxis(self.Z[:, None, :] - self.Z[:, :], 2)**2) +
# -0.25*np.rollaxis((2.*self.X_mu[:, None, None, :] - self.Z[:, None, :] - self.Z[:, :]) / (2.*alpha[None, None, :]*self.X_S[:, None, None, :] + 1.), 3, 1)**2
# -np.rollaxis(self.X_S[:, None, None, :] / (2.*alpha[:]*self.X_S[:, None, None, :] + 1.), 3, 1)), 0)
res = np.zeros((self.Q, self.M, self.M))
for i in xrange(self.local_N):
res += (self.exp_K_mi_K_im[i, None, :, :] * (
(-0.25*np.rollaxis(self.Z[:, None, :] - self.Z[:, :], 2)**2) +
-0.25*np.rollaxis((2.*self.X_mu[i, None, None, :] - self.Z[:, None, :] - self.Z[:, :]) / (2.*alpha[None, None, :]*self.X_S[i, None, None, :] + 1.), 2, 0)**2
-np.rollaxis(self.X_S[i, None, None, :] / (2.*alpha[:]*self.X_S[i, None, None, :] + 1.), 2, 0)))
# print (time.time() - timec)
# print (a.shape)
# print np.sum(np.abs(a - dexp_K_mi_K_im_dalpha))
return res
def grad_alpha(self, dF_dKmm, dKmm_dalpha, dF_dexp_K_miY, dexp_K_miY_dalpha, dF_dexp_K_mi_K_im, dexp_K_mi_K_im_dalpha):
# dF_dalpha = dF_dKmm (5.7) * dKmm_dalpha (5.58) +
# dF_dexp_K_ii * dexp_K_ii_dalpha ( = 0, 5.59) +
# dF_dexp_K_miY (5.27) * dexp_K_miY_dalpha (5.60) +
# dF_dexp_K_mi_K_im (5.35) * dexp_K_mi_K_im_dalpha (5.61)
# Sum all the constituent parts to give the final gradient
dF = np.zeros(self.Q)
for q in xrange(self.Q):
dF[q] = (np.sum(dF_dKmm * dKmm_dalpha[q, :, :]) +
np.sum(dF_dexp_K_miY * dexp_K_miY_dalpha[q, :, :]) +
np.sum(dF_dexp_K_mi_K_im * dexp_K_mi_K_im_dalpha[q, :, :]))
return dF
###############################################################################
# grad_sf2 and necessary functions
###############################################################################
def dKmm_dsf2(self):
# Eqn (5.54)
return self.Kmm / self.hyp.sf**2
def dexp_K_miY_dsf2(self):
# Eqn (5.54)
return self.exp_K_miY / self.hyp.sf**2
def dexp_K_mi_K_im_dsf2(self):
# Eqn (5.54)
return 2.0 * self.sum_exp_K_mi_K_im / self.hyp.sf**2
def dexp_K_ii_dsf2(self):
# Eqn (5.54)
return self.local_N
def grad_sf2(self, dF_dKmm, dKmm_dsf2, dF_dexp_K_ii, dexp_K_ii_dsf2, dF_dexp_K_miY, dexp_K_miY_dsf2, dF_dexp_K_mi_K_im, dexp_K_mi_K_im_dsf2):
# dF_dsf2 = dF_Kmm (5.7) * dKmm_dsf2 (5.54) +
# dF_dexp_K_ii (5.15) * dexp_K_ii_dsf2 (5.55) +
# dF_dexp_K_miY * dexp_K_miY_dsf2 (5.56) +
# dF_dexp_K_mi_K_im * dexp_K_mi_K_im_dsf2 (5.57)
dF = (np.sum(dF_dKmm * dKmm_dsf2) +
dF_dexp_K_ii * dexp_K_ii_dsf2 +
np.sum(dF_dexp_K_miY * dexp_K_miY_dsf2) +
np.sum(dF_dexp_K_mi_K_im * dexp_K_mi_K_im_dsf2))
return dF
###############################################################################
# grad_beta and necessary functions
###############################################################################
def grad_beta(self):
# dF_beta (5.74)
N = self.N
D = self.D
beta = self.beta
# Matrix calculated in (5.76). - a very informative name :-)
mat576 = self.exp_K_miY.T.dot(self.Kmm_plus_op_inv.dot(self.exp_K_miY))
if (mat576.ndim < 2):
pass
dF = ( 0.5*N*D/beta +
-0.5*D*np.trace(self.Kmm_plus_op_inv.dot(self.sum_exp_K_mi_K_im)) +
-0.5*self.sum_YYT +
-0.5*D*self.sum_exp_K_ii +
0.5*D*np.trace(self.Kmm_inv.dot(self.sum_exp_K_mi_K_im)) +
beta*np.trace(mat576) +
-0.5*beta**2*np.trace(self.exp_K_miY.T.dot(self.Kmm_plus_op_inv.dot(self.sum_exp_K_mi_K_im).dot(self.Kmm_plus_op_inv).dot(self.exp_K_miY)))
)
return dF
###############################################################################
# grad_X_mu and grad_X_S
###############################################################################
def grad_X_mu(self):
# dF_dmu = dF_Kmm (5.7) * dKmm_dmu (= 0, 5.63) +
# dF_dexp_K_ii (5.15) * dexp_K_ii_dmu (= 0, 5.64) +
# dF_dexp_K_miY * dexp_K_miY_dmu (5.65) +
# dF_dexp_K_mi_K_im * dexp_K_mi_K_im_dmu (5.66) +
# dF_dKL * dKL_dmu (5.72)
alpha = self.hyp.ard**-2
# Shared partial derivatives - to be cached
dF_dexp_K_miY = self.beta**2*self.Kmm_plus_op_inv.dot(self.exp_K_miY)
dF_dexp_K_mi_K_im = (-0.5*self.beta*self.D*self.Kmm_plus_op_inv +
0.5*self.beta*self.D*self.Kmm_inv +
-0.5*self.beta**3 * (self.Kmm_plus_op_inv.dot(self.exp_K_miY.dot(self.exp_K_miY.T.dot(self.Kmm_plus_op_inv)))))
dF = np.zeros((self.local_N, self.Q))
for i in xrange(self.local_N):
# Eqn (5.72)
dF[i, :] += -self.X_mu[i, :]
for q in xrange(self.Q):
# Eqn (5.65)
dexp_K_miY_dmu_iq = np.outer(self.exp_K_mi[i, :] * (-alpha[q]*(self.X_mu[i, q] - self.Z[:, q]) /
(alpha[q]*self.X_S[i, q] + 1.0)),
self.Y[i, :])
# Eqn (5.66)
dexp_K_mi_K_im_dmu_iq = self.exp_K_mi_K_im[i, :, :] * -alpha[q]*(2*self.X_mu[i, q] - self.Z[:, None, q] - self.Z[None, :, q]) / (2*alpha[q] * self.X_S[i, q] + 1.0)
dF[i, q] += (np.sum(dF_dexp_K_miY * dexp_K_miY_dmu_iq) +
np.sum(dF_dexp_K_mi_K_im * dexp_K_mi_K_im_dmu_iq))
return dF
def grad_X_S(self):
# dF_ds = dF_Kmm (5.7) * dKmm_ds (= 0, 5.67) +
# dF_dexp_K_ii (5.15) * dexp_K_ii_ds (= 0, 5.68) +
# dF_dexp_K_miY * dexp_K_miY_ds (5.69) +
# dF_dexp_K_mi_K_im * dexp_K_mi_K_im_ds (5.70)
# dF_dKL * dKL_ds
dF = np.zeros((self.local_N, self.Q))
alpha = self.hyp.ard**-2
# Shared partial derivatives - to be cached
dF_dexp_K_miY = self.beta**2*self.Kmm_plus_op_inv.dot(self.exp_K_miY)
dF_dexp_K_mi_K_im = (-0.5*self.beta*self.D*self.Kmm_plus_op_inv +
0.5*self.beta*self.D*self.Kmm_inv +
-0.5*self.beta**3 * (self.Kmm_plus_op_inv.dot(self.exp_K_miY.dot(self.exp_K_miY.T.dot(self.Kmm_plus_op_inv)))))
for i in xrange(self.local_N):
# Eqn (5.73)
dF[i, :] = -0.5 * (1.0 - 1.0 / self.X_S[i, :])
for q in xrange(self.Q):
# Eqn (5.69)
dexp_K_miY_ds_iq = np.outer(self.exp_K_mi[i, :] *
( 0.5 * ((alpha[q] * (self.X_mu[i, q] - self.Z[:, q])) / (alpha[q]*self.X_S[i, q] + 1.0))**2
-0.5 * (alpha[q] / (alpha[q]*self.X_S[i, q] + 1))), self.Y[i, :])
# Eqn (5.70)
dexp_K_mi_K_im_ds_iq = self.exp_K_mi_K_im[i, :, :] * ( 2.0 * ((alpha[q] * (2*self.X_mu[i, q] - self.Z[:, None, q] - self.Z[None, :, q])) / (4.0*alpha[q]*self.X_S[i, q] + 2.0))**2 +
(-alpha[q] / (2*alpha[q]*self.X_S[i, q] + 1.0)))
dF[i, q] += (np.sum(dF_dexp_K_miY * dexp_K_miY_ds_iq) +
np.sum(dF_dexp_K_mi_K_im * dexp_K_mi_K_im_ds_iq))
return dF
###############################################################################
# Log marginal likelihood and necessary functions
###############################################################################
def logmarglik(self):
'''
logmarglik
Calculates the lower bound to log p(Y), the log marginal likelihood of the
GPLVM, given the data. From the statistics calculated in parallel.
Args:
Kmm : The covariance matrix of the inducing points.
Returns:
A single number, the log marginal likelihood.
Status:
Finished
Tested
- Corresponds with gradient w.r.t. Kmm.
'''
Kmm_plus_op = self.Kmm + self.beta*self.sum_exp_K_mi_K_im
s1, Kmm_logdet = linalg.slogdet(self.Kmm)
s2, Kmm_plus_op_logdet = linalg.slogdet(Kmm_plus_op)
# Add jitter if either matrices is not PSD
if s1 < 0:
s1, Kmm_logdet = linalg.slogdet(self.Kmm + np.eye(self.M) * 1e-7)
if s2 < 0:
Kmm_plus_op += np.eye(self.M) * 1e-7
s2, Kmm_plus_op_logdet = linalg.slogdet(Kmm_plus_op)
if __debug__:
assert s1 >= 0.0
assert s2 >= 0.0
# Eqn (5.2)
lml = (-0.5*self.N*self.D*np.log(2*constants.pi) +
0.5*self.D*self.N*np.log(self.beta) +
0.5*self.D*Kmm_logdet +
-0.5*self.D*Kmm_plus_op_logdet +
-0.5*self.beta*self.sum_YYT +
-0.5*self.beta*self.D*self.sum_exp_K_ii +
0.5*self.beta*self.D*np.trace(self.Kmm_inv.dot(self.sum_exp_K_mi_K_im)) +
0.5*self.beta**2*np.trace(self.exp_K_miY.T.dot(linalg.inv(Kmm_plus_op).dot(self.exp_K_miY))) +
-self.KL)
return lml
###############################################################################
# calc_grad.py
# Take the statistics calculated in parallel (sum them, or maybe do this
# outside the class) and use them to calculate the gradients.
###############################################################################
class calc_grad(object):
def __init__(self, exp_K_ii, exp_K_miY, sum_exp_K_mi_K_im):
# We also need all other parameters.
self.exp_K_ii = exp_K_ii
self.exp_K_miY = exp_K_miY
self.sum_exp_K_mi_K_im = sum_exp_K_mi_K_im
self._calc_F_grads()
def _calc_F_grads(self):
'''
_calc_F_grads
Calculate the first parts of the chain of partial derivatives of F,
i.e.:
- dF_dexp_K_ii
- dF_dexp_K_miY
- dF_dexp_K_mi_K_im
For this we need the statistics which have been calculated in parallel:
- exp_K_ii (sum over all N)
- exp_K_miY (sum over all N)
- exp_K_mi_K_im (sum over all N)
And some useful matrices derived from these:
- Kmm_plus_op
- Kmm_plus_op_inv
'''
pass