-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrev_response.R
162 lines (129 loc) · 5.11 KB
/
rev_response.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
library(boot)
# Modelling inbreeding depression in survival
# Using binomial mixed (animal) models with logit link, annual survival as response
# main modeling package is INLA
library(lme4)
library(tidyverse)
library(broom.mixed)
source("theme_simple.R")
library(INLA) # Downloaded from http://www.r-inla.org/download
library(AnimalINLA) # Downloaded from http://www.r-inla.org/related-projects/animalinla
library(MCMCglmm)
library(sjPlot)
library(brinla)
# data
load("data/survival_mods_data.RData")
load("data/sheep_ped.RData")
ped <- sheep_ped
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~Annual survival~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# survival data preprocessing
annual_survival <- fitness_data %>%
# filter na rows
filter_at(vars(survival, froh_all, birth_year, sheep_year), ~ !is.na(.)) %>%
mutate(age_cent = age - mean(age, na.rm = TRUE),
age_cent2 = age_cent^2,
age_std = as.numeric(scale(age)),
age_std2 = age_std^2,
froh_all_cent = froh_all - mean(froh_all, na.rm = TRUE),
# times 10 to estimate a 10% percent increase
froh_all10 = froh_all * 10,
froh_all10_cent = froh_all10 - mean(froh_all10, na.rm = TRUE),
lamb = ifelse(age == 0, 1, 0),
lamb_cent = lamb - mean(lamb, na.rm = TRUE),
lamb = as.factor(lamb)) %>%
as.data.frame()
ped <- sheep_ped[, c(1,3,2)]
ped_fin <- prePed(ped)
ID <- pedInbreeding(ped_fin) %>% as_tibble() %>% rename(id = Indiv, fped = Inbr)
froh <- annual_survival %>% select(id, froh_all)
f_vals <- froh %>% left_join(ID) %>% distinct()
ggplot(f_vals, aes(fped, froh_all)) +
geom_point()
annual_survival %>% filter(froh_all > 0.34) %>% nrow(.)
annual_survival %>% filter(froh_all > 0.24) %>% nrow(.)
# average age according to Suppl. Figure 9
av_age <- (2134*1 + 1589*2 + 1282*3 + 1100*4 + 910*5 + 720*6 + 554*7 + 422*8 + 254*9)/(2134 + 1589 + 1282 + 1100 + 910 + 720 + 554 + 422 + 254)
# parameter estimates in linear predictor according to Suppl. Table 4 for males (sex=1) and not twins (twin=0)
int <- 3.34
Froh <- -1.14
Age <- -0.21
Lamb <- -3.41
Sex <- -0.63
fa_int <- 0.17
fl_int <- 0.62
# calculate linear predictor based on the parameter estimates above
# linear predictor for lamb (age=0) at average F_ROH (=0)
linpred_L_0 <- int + Froh*0 + Age*(0-av_age) + Lamb + Sex*1 + fa_int*(0-av_age)*0 + fl_int*0*1
surv_L_0 <- inv.logit(linpred_L_0)
surv_L_0
# linear predictor for lamb (age=0) at F_ROH of 0.34 (=1)
linpred_L_1 <- int + Froh*1 + Age*(0-av_age) + Lamb + Sex*1 + fa_int*(0-av_age)*1 + fl_int*1*1
surv_L_1 <- inv.logit(linpred_L_1)
surv_L_1
linpred_L_2 <- int + Froh*2 + Age*(0-av_age) + Lamb + Sex*1 + fa_int*(0-av_age)*1 + fl_int*1*1
surv_L_2 <- inv.logit(linpred_L_2)
surv_L_2
# inbreeding depression lambs
ID_Lamb <- (surv_L_0 - surv_L_1)/surv_L_0
# odds ratio for inbreeding effect in lambs
OR_Lamb <- (surv_L_1/(1-surv_L_1)/(surv_L_0/(1-surv_L_0)))
# linear predictor for age=1 at average F_ROH (=0)
linpred_1_0 <- int + Froh*0 + Age*(1-av_age) + Sex*1+ fa_int*(1-av_age)*0
surv_1_0 <- inv.logit(linpred_1_0)
surv_1_0
# linear predictor for age=1 at F_ROH of 0.34 (=1)
linpred_1_1 <- int + Froh*1 + Age*(1-av_age) + Sex*1 + fa_int*(1-av_age)*1
surv_1_1 <- inv.logit(linpred_1_1)
surv_1_1
# inbreeding depression age=1
ID_1 <- (surv_1_0 - surv_1_1)/surv_1_0
# odds ratio for inbreeding effect in sheep age=1
OR_1 <- (surv_1_1/(1-surv_1_1)/(surv_1_0/(1-surv_1_0)))
# linear predictor for age=4 at average F_ROH (=0)
linpred_4_0 <- int + Froh*0 + Age*(4-av_age) + Sex*1 + fa_int*(4-av_age)*0
surv_4_0 <- inv.logit(linpred_4_0)
surv_4_0
# linear predictor for age=4 at F_ROH of 0.34 (=1)
linpred_4_1 <- int + Froh*1 + Age*(4-av_age) + Sex*1 + fa_int*(4-av_age)*1
surv_4_1 <- inv.logit(linpred_4_1)
surv_4_1
# inbreeding depression age=4
ID_4 <- (surv_4_0 - surv_4_1)/surv_4_0
# odds ratio for inbreeding effect in sheep age=4
OR_4 <- (surv_4_1/(1-surv_4_1)/(surv_4_0/(1-surv_4_0)))
# linear predictor for age=7 at average F_ROH (=0)
linpred_7_0 <- int + Froh*0 + Age*(7-av_age) + Sex*1 + fa_int*(7-av_age)*0
linpred_7_0
surv_7_0 <- inv.logit(linpred_7_0)
surv_7_0
# linear predictor for age=7 at F_ROH of 0.34 (=1)
linpred_7_1 <- int + Froh*1 + Age*(7-av_age) + Sex*1 + fa_int*(7-av_age)*1
linpred_7_1
surv_7_1 <- inv.logit(linpred_7_1)
surv_7_1
# inbreeding depression age=7
ID_7 <- (surv_7_0 - surv_7_1)/surv_7_0
# odds ratio for inbreeding effect in sheep age=2
OR_7 <- (surv_7_1/(1-surv_7_1)/(surv_7_0/(1-surv_7_0)))
# compare inbreeding depression and odds ratios
ID_Lamb
OR_Lamb
ID_1
OR_1
ID_4
OR_4
ID_7
OR_7
# Estimate age-specific beta_FROH (as in Suppl. Fig. 9) and plot them
beta_FROH <- rep(NA,10)
beta_FROH[1] <- Froh + fl_int + fa_int*(0-av_age)
beta_FROH[2] <- Froh + fa_int*(1-av_age)
beta_FROH[3] <- Froh + fa_int*(2-av_age)
beta_FROH[4] <- Froh + fa_int*(3-av_age)
beta_FROH[5] <- Froh + fa_int*(4-av_age)
beta_FROH[6] <- Froh + fa_int*(5-av_age)
beta_FROH[7] <- Froh + fa_int*(6-av_age)
beta_FROH[8] <- Froh + fa_int*(7-av_age)
beta_FROH[9] <- Froh + fa_int*(8-av_age)
beta_FROH[10] <- Froh + fa_int*(9-av_age)
plot(0:9,beta_FROH,xlab='age')