-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
282 lines (244 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import argparse
import json
import os
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor # To share lru_cache
from datetime import datetime
from os.path import join
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from torchvision.utils import make_grid
from tqdm import tqdm
from dataloader import OmniStereoDataset
from dataloader.custom_transforms import Resize, ToTensor, Normalize
from models import OmniMVS
from models import SphericalSweeping
from utils import InvDepthConverter, evaluation_metrics
parser = argparse.ArgumentParser(description='Training for OmniMVS',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('root_dir', metavar='DATA_DIR', help='path to dataset')
parser.add_argument('-t', '--train-list', default='./dataloader/omnithings_train.txt',
type=str, help='Text file includes filenames for training')
parser.add_argument('-v', '--val-list', default='./dataloader/omnithings_val.txt',
type=str, help='Text file includes filenames for validation')
parser.add_argument('--epochs', default=21, type=int, metavar='N', help='total epochs')
parser.add_argument('--pretrained', default=None, metavar='PATH',
help='path to pre-trained model')
parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size')
parser.add_argument('--min_depth', type=float, default=0.55, help='minimum depth in m')
parser.add_argument('--fov', type=float, default=220, help='field of view of the camera in degree')
if False:
# Paper setting
parser.add_argument('--ndisp', type=int, default=192, metavar='N', help='number of disparity')
parser.add_argument('--input_width', type=int, default=800, metavar='N', help='input image width')
parser.add_argument('--input_height', type=int, default=768, metavar='N', help='input image height')
parser.add_argument('--output_width', type=int, default=640, metavar='N', help='output depth width')
parser.add_argument('--output_height', type=int, default=320, metavar='N', help='output depth height')
else:
# Light weight
parser.add_argument('--ndisp', type=int, default=64, metavar='N', help='number of disparity')
parser.add_argument('--input_width', type=int, default=500, metavar='N', help='input image width')
parser.add_argument('--input_height', type=int, default=480, metavar='N', help='input image height')
parser.add_argument('--output_width', type=int, default=512, metavar='N', help='output depth width')
parser.add_argument('--output_height', type=int, default=256, metavar='N', help='output depth height')
parser.add_argument('-j', '--workers', default=6, type=int, metavar='N', help='number of data loading workers')
parser.add_argument('--lr', '--learning-rate', default=5e-4, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum for sgd')
parser.add_argument('--arch', default='omni_small', type=str, help='architecture name for log folder')
parser.add_argument('--log-interval', type=int, default=5, metavar='N', help='tensorboard log interval')
def main():
args = parser.parse_args()
print('Arguments:')
print(json.dumps(vars(args), indent=1))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cpu')
if device.type != 'cpu':
cudnn.benchmark = True
print("device:", device)
###############################
# Setup model
sweep = SphericalSweeping(args.root_dir, h=args.output_height, w=args.output_width, fov=args.fov)
model = OmniMVS(sweep, args.ndisp, args.min_depth, h=args.output_height, w=args.output_width)
model = model.to(device)
# cache
num_cam = 4
pool = ThreadPoolExecutor(5)
futures = []
for i in range(num_cam):
for d in model.depths[::2]:
futures.append(pool.submit(sweep.get_grid, i, d))
# Setup solver
print('=> setting optimizer')
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
# optimizer = torch.optim.Adam(model.parameters(),lr=3e-4)
print('=> setting scheduler')
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=2 * args.epochs // 3, gamma=0.1)
start_epoch = 0
# Load pretrained model
if args.pretrained:
checkpoint = torch.load(args.pretrained)
param_check = {
'ndisp': model.ndisp,
'min_depth': model.min_depth,
'output_width': model.w,
'output_height': model.h,
}
for key, val in param_check.items():
if not checkpoint[key] == val:
print(f'Error! Key:{key} is not the same as the checkpoints')
print("=> using pre-trained weights")
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
print("=> Resume training from epoch {}".format(start_epoch))
#
model = nn.DataParallel(model)
# Setup solver
timestamp = datetime.now().strftime("%m%d-%H%M")
log_folder = join('checkpoints', f'{args.arch}_{timestamp}')
print(f'=> create log folder: {log_folder}')
os.makedirs(log_folder, exist_ok=True)
with open(join(log_folder, 'args.json'), 'w') as f:
json.dump(vars(args), f, indent=1)
writer = SummaryWriter(log_dir=log_folder)
writer.add_text('args', json.dumps(vars(args), indent=1))
# Setup dataloader
image_size = (args.input_width, args.input_height)
depth_size = (args.output_width, args.output_height)
train_transform = transforms.Compose([Resize(image_size, depth_size), ToTensor(), Normalize()])
trainset = OmniStereoDataset(args.root_dir, args.train_list, transform=train_transform, fov=args.fov)
val_transform = transforms.Compose([Resize(image_size, depth_size), ToTensor(), Normalize()])
valset = OmniStereoDataset(args.root_dir, args.val_list, transform=val_transform, fov=args.fov)
print(f'{len(trainset)} samples for training.')
print(f'{len(valset)} samples for validation.')
train_loader = DataLoader(trainset, args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(valset, args.batch_size, shuffle=False, num_workers=args.workers, pin_memory=True)
print('=> wait for a while until all tasks in pool are finished')
pool.shutdown()
print('=> Done!')
###############################
# Start training
###############################
print("Start training")
for epoch in range(start_epoch, args.epochs):
# train
ave_loss = train(args, model, train_loader, optimizer, writer, epoch, device)
print(f"Epoch:{epoch}/{args.epochs}, Train Loss average:{ave_loss:.4f}")
# validation
ave_loss = validation(args, model, val_loader, writer, epoch, device)
print(f"Epoch:{epoch}/{args.epochs}, Val Loss average:{ave_loss:.4f}")
scheduler.step()
# save data here
save_data = {
'epoch': epoch + 1,
'state_dict': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'ave_loss': ave_loss,
'ndisp': model.module.ndisp,
'min_depth': model.module.min_depth,
'output_width': model.module.w,
'output_height': model.module.h,
}
torch.save(save_data, join(log_folder, f'checkpoints_{epoch}.pth'))
writer.close()
print('Finish training')
def train(args, model, train_loader, optimizer, writer, epoch, device):
invd_0 = model.module.inv_depths[0]
invd_max = model.module.inv_depths[-1]
converter = InvDepthConverter(args.ndisp, invd_0, invd_max)
ndisp = model.module.ndisp
losses = []
model.train()
pbar = tqdm(train_loader)
for idx, batch in enumerate(pbar):
# to cuda
for key in batch.keys():
batch[key] = batch[key].to(device)
pred = model(batch)
gt_idepth = batch['idepth']
# Loss function
gt_invd_idx = converter.invdepth_to_index(gt_idepth)
loss = nn.L1Loss()(pred, gt_invd_idx)
losses.append(loss.item())
# update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update progress bar
display = OrderedDict(epoch=f"{epoch:>2}", loss=f"{losses[-1]:.4f}")
pbar.set_postfix(display)
# tensorboard log
niter = epoch * len(train_loader) + idx
if idx % args.log_interval == 0:
writer.add_scalar('train/loss', loss.item(), niter)
if idx % (200 * args.log_interval) == 0:
imgs = []
for cam in model.module.cam_list:
imgs.append(0.5 * batch[cam][0] + 0.5)
img_grid = make_grid(imgs, nrow=2, padding=5, pad_value=1)
writer.add_image('train/fisheye', img_grid, niter)
writer.add_image('train/pred', pred[:1] / ndisp, niter)
writer.add_image('train/gt', gt_invd_idx[:1] / ndisp, niter)
# End of one epoch
ave_loss = sum(losses) / len(losses)
writer.add_scalar('train/loss_ave', ave_loss, epoch)
return ave_loss
def validation(args, model, val_loader, writer, epoch, device):
invd_0 = model.module.inv_depths[0]
invd_max = model.module.inv_depths[-1]
converter = InvDepthConverter(args.ndisp, invd_0, invd_max)
ndisp = model.module.ndisp
preds = []
gts = []
losses = []
model.eval()
pbar = tqdm(val_loader)
for idx, batch in enumerate(pbar):
with torch.no_grad():
# to cuda
for key in batch.keys():
batch[key] = batch[key].to(device)
pred = model(batch)
gt_idepth = batch['idepth']
# Loss function
gt_invd_idx = converter.invdepth_to_index(gt_idepth)
loss = nn.L1Loss()(pred, gt_invd_idx)
losses.append(loss.item())
# save for evaluation
preds.append(pred.cpu())
gts.append(gt_invd_idx.cpu())
# update progress bar
display = OrderedDict(epoch=f"{epoch:>2}", loss=f"{losses[-1]:.4f}")
pbar.set_postfix(display)
# tensorboard log
niter = epoch * len(val_loader) + idx
if idx % args.log_interval == 0:
writer.add_scalar('val/loss', loss.item(), niter)
if idx % 200 * args.log_interval == 0:
imgs = []
for cam in model.module.cam_list:
imgs.append(0.5 * batch[cam][0] + 0.5)
img_grid = make_grid(imgs, nrow=2, padding=5, pad_value=1)
writer.add_image('val/fisheye', img_grid, niter)
writer.add_image('val/pred', pred[:1] / ndisp, niter)
writer.add_image('val/gt', gt_invd_idx[:1] / ndisp, niter)
preds = torch.cat(preds)
gts = torch.cat(gts)
errors, error_names = evaluation_metrics(preds, gts, args.ndisp)
for name, val in zip(error_names, errors):
writer.add_scalar(f'val_metrics/{name}', val, epoch)
print("Evaluation metrics: ")
print("{:>8}, {:>8}, {:>8}, {:>8}, {:>8}".format(*error_names))
print("{:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}, {:8.4f}".format(*errors))
# End of one epoch
ave_loss = sum(losses) / len(losses)
writer.add_scalar('val/loss_ave', ave_loss, epoch)
return ave_loss
if __name__ == '__main__':
main()