-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbench.cpp
219 lines (187 loc) · 7.35 KB
/
bench.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#include <benchmark/benchmark.h>
#include <random>
#include <vits.h>
using namespace benchmark;
vits_model* model = nullptr;
struct ggml_context *ctx;
struct ggml_tensor *cur_fp32, *filters_fp32, *cur, *filters, *colA, *colB, *colA_fp32, *colB_fp32;
static void GlobalSetup() {
model = vits_model_load_from_file("/Users/maximilianolevi/Documents/Repositories/vits.cpp/scripts/vits-spanish.ggml");
struct ggml_init_params params = {
.mem_size = (size_t)256*1024*1024,
.mem_buffer = nullptr,
};
ctx = ggml_init(params); // Initialize context with appropriate parameters
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> dis(0.0, 0.1);
// Initialize tensors
cur_fp32 = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 64000, 256, 1);
for (int i = 0; i < ggml_nelements(cur_fp32); ++i) {
((float*) cur_fp32->data)[i] = dis(gen);
}
filters_fp32 = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 16, 256, 256);
for (int i = 0; i < ggml_nelements(filters_fp32); ++i) {
((float*) filters_fp32->data)[i] = dis(gen);
}
// Convert to other formats if necessary
cur = ggml_new_tensor(ctx, GGML_TYPE_F16, cur_fp32->n_dims, cur_fp32->ne);
ggml_fp32_to_fp16_row((float*)cur_fp32->data, (ggml_fp16_t*)cur->data, ggml_nelements(cur_fp32));
filters = ggml_new_tensor(ctx, GGML_TYPE_F16, filters_fp32->n_dims, filters_fp32->ne);
ggml_fp32_to_fp16_row((float*)filters_fp32->data, (ggml_fp16_t*)filters->data, ggml_nelements(filters_fp32));
// cols
colA_fp32 = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 8000, 768, 1);
for (int i = 0; i < ggml_nelements(cur_fp32); ++i) {
((float*) colA_fp32->data)[i] = dis(gen);
}
colB_fp32 = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 8000, 1200, 1);
for (int i = 0; i < ggml_nelements(filters_fp32); ++i) {
((float*) colB_fp32->data)[i] = dis(gen);
}
// Convert to other formats if necessary
colA = ggml_new_tensor(ctx, GGML_TYPE_F16, colA_fp32->n_dims, colA_fp32->ne);
ggml_fp32_to_fp16_row((float*)colA_fp32->data, (ggml_fp16_t*)colA->data, ggml_nelements(colA));
colB = ggml_new_tensor(ctx, GGML_TYPE_F16, colB_fp32->n_dims, colB_fp32->ne);
ggml_fp32_to_fp16_row((float*)colB_fp32->data, (ggml_fp16_t*)colB->data, ggml_nelements(colB_fp32));
}
static void GlobalCleanup() {
ggml_free(ctx);
vits_free_model(model);
}
struct ggml_tensor* execute_tensor(
struct ggml_context* ctx,
struct ggml_tensor* tensor
) {
struct ggml_cgraph* graph = ggml_new_graph(ctx);
ggml_build_forward_expand(graph, tensor);
int threads = std::max((int)std::thread::hardware_concurrency(), 2);
auto plan = ggml_graph_plan(graph, threads);
if (plan.work_size > 0) {
plan.work_data = (uint8_t*) malloc(plan.work_size);
}
ggml_graph_compute(graph, &plan);
return tensor;
}
/*
static void BM_tensor_conv_1d(State& state) {
for (auto _ : state) {
struct ggml_init_params params = {
.mem_size = (size_t)16*1024*1024*1024,
.mem_buffer = nullptr,
};
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = tensor_conv_1d(ctx2, cur_fp32, filters_fp32, 1, 1, 1);
benchmark::DoNotOptimize(result);
result = execute_tensor(ctx2, result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_tensor_conv_1d);
static void BM_ggml_conv_1d(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_conv_1d(ctx2, filters, cur_fp32, 1, 1, 1);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_conv_1d);
static void BM_tensor_conv_1d_inplace(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = tensor_conv_1d_inplace(ctx2, cur, filters, 1, 1, 1);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_tensor_conv_1d_inplace);
static void BM_im2col_impl(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = im2col_impl(ctx2, filters_fp32, cur_fp32, 1, 1, 1);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_im2col_impl);
static void BM_ggml_im2col_1d(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_im2col_1d(ctx2, filters, cur_fp32, 1, 1, 1);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_im2col_1d);
static void BM_ggml_im2col_1d_float(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_im2col_1d(ctx2, filters_fp32, cur_fp32, 1, 1, 1);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_im2col_1d_float);
static void BM_ggml_im2col_1d_fp16_and_cast(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_im2col_1d(ctx2, filters, cur_fp32, 1, 1, 1);
result = cast_tensor_fp16_to_fp32(ctx2, result);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_im2col_1d_fp16_and_cast);
static void BM_ggml_im2col(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_im2col(ctx2, filters, cur_fp32, 1, 0, 1, 0, 1, 0, false);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_im2col);
static void BM_ggml_mul_mat_fp16(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_mul_mat(ctx2, colA, colB);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_mul_mat_fp16);
static void BM_ggml_mul_mat_fp32(State& state) {
for (auto _ : state) {
auto ctx2 = ggml_init({.mem_size = (size_t)16*1024*1024*1024,});
auto result = ggml_mul_mat(ctx2, colA_fp32, colB_fp32);
result = execute_tensor(ctx2, result);
benchmark::DoNotOptimize(result);
ggml_free(ctx2);
}
}
BENCHMARK(BM_ggml_mul_mat_fp32);
*/
static const char* phrase = "Cada amanecer trae consigo nuevas oportunidades para crecer y aprender.";
static void BM_vits_model_process(State& state) {
for (auto _ : state) {
auto result = vits_model_process(model, phrase);
benchmark::DoNotOptimize(result);
vits_free_result(result);
}
}
BENCHMARK(BM_vits_model_process);
int main(int argc, char** argv) {
GlobalSetup();
::benchmark::Initialize(&argc, argv);
if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1;
::benchmark::RunSpecifiedBenchmarks();
GlobalCleanup();
}