From 6981cfc2409a8d7881f71a04524f8a22e88e83f8 Mon Sep 17 00:00:00 2001 From: Minxing Pang <32996899+maxpmx@users.noreply.github.com> Date: Sun, 27 Oct 2024 14:15:00 -0400 Subject: [PATCH] update --- README.md | 2 +- docs/source/index.rst | 1 + docs/source/quickstart.rst | 21 +++++++++++++++------ 3 files changed, 17 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 569f6ce..5f5cc5c 100644 --- a/README.md +++ b/README.md @@ -56,7 +56,7 @@ cd CelloType Then Download the model weights: ```bash -cd data +cd models sh download.sh cd .. ``` diff --git a/docs/source/index.rst b/docs/source/index.rst index 7713b73..f328d1f 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -15,6 +15,7 @@ CelloType is an end-to-end Transformer-based method for automated cell/nucleus s :caption: Examples: notebooks/cell_segmentation + inference_large notebooks/tissue_annotation .. toctree:: diff --git a/docs/source/quickstart.rst b/docs/source/quickstart.rst index 4bc8d6a..d0ac278 100644 --- a/docs/source/quickstart.rst +++ b/docs/source/quickstart.rst @@ -1,22 +1,31 @@ Quickstart ------------------------------ -Clone the repository: +Clone the repository and download the pre-trained models: +~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: bash git clone https://github.com/maxpmx/CelloType.git cd CelloType -Then Download the model weights: - .. code-block:: bash - cd data + cd models sh download.sh cd .. -Predict on an example image: +Prepare the input images +~~~~~~~~~~~~~~~~~~~~~~~~~ + +Convert the input images into an RGB format where the blue channel represents the nuclear channel, the green channel corresponds to the membrane channel. + +.. image:: ../../data/example/example_tissuenet.png + :width: 250px + :alt: drawing + +Inference the cell segmentation +~~~~~~~~~~~~~~~~~~~~~~~~~ .. code-block:: python @@ -31,4 +40,4 @@ Predict on an example image: device='cuda', config_path='./configs/maskdino_R50_bs16_50ep_4s_dowsample1_2048.yaml') - mask = model.predict(img) # [H, W] \ No newline at end of file + mask = model.predict(img) # [H, W]