-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLU.cpp
118 lines (107 loc) · 3.05 KB
/
LU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/**
* @file LU.cpp
* @author Melih Altun @2015
**/
#include "LU.h"
/*subroutine for pivot function*/
void swap(double *a, double *b)
{
double tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
/*Partial pivoting function to optain permutation matrix P and rotated version of input A*/
void pivot(double P[], double A[], int n)
{
int i, j, k, max_j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (i == j)
P[lin_index(i, j, n)] = 1;
else
P[lin_index(i, j, n)] = 0;
}
}
for (i = 0; i < n-1; i++) {
max_j = i;
for (j = i + 1; j < n; j++) {
if (fabs(A[lin_index(j, i, n)]) > fabs(A[lin_index(max_j, i, n)]))
max_j = j;
}
if (max_j != i) {
for (k = 0; k < n; k++) {
swap(&P[lin_index(i, k, n)], &P[lin_index(max_j, k, n)]);
swap(&A[lin_index(i, k, n)], &A[lin_index(max_j, k, n)]);
}
}
}
}
/*LU decomposition without permutation matrix.
L and U are lower and upper triangular matrices obtained from input A
L x U will yield some rotated version of the input.
This implementation will result in diagonal of U having ones as values.
The product of diagonal of L will give the determinant of the input.
Parameters: (outputs) lower triangular matrix, upper triangular matrix,
(inputs) input square matrix, size of input */
void LU(double L[], double U[], double A[], int n)
{
int i, j, k;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
if (j < i)
L[lin_index(j, i, n)] = 0;
else {
L[lin_index(j, i, n)] = A[lin_index(j, i, n)];
for (k = 0; k < i; k++)
L[lin_index(j, i, n)] = L[lin_index(j, i, n)] - L[lin_index(j, k, n)] * U[lin_index(k, i, n)];
}
}
for (j = 0; j < n; j++) {
if (j < i)
U[lin_index(i, j, n)] = 0;
else if (j == i)
U[lin_index(i, j, n)] = 1;
else {
if (fabs(L[lin_index(i, i, n)]) < TOLR)
U[lin_index(i, j, n)] = 0;
else {
U[lin_index(i, j, n)] = A[lin_index(i, j, n)] / L[lin_index(i, i, n)];
for (k = 0; k < i; k++)
U[lin_index(i, j, n)] = U[lin_index(i, j, n)] - ((L[lin_index(i, k, n)] * U[lin_index(k, j, n)]) / L[lin_index(i, i, n)]);
}
}
}
}
}
/*LU decompostion with permutation matrix
L and U are lower and upper triangular matrices obtained from input A
P is the permutation matrix which satisfies: P x A = L x U
Parameters: (outputs) lower triangular matrix, upper triangular matrix, permutation matrix,
(inputs) input square matrix, size of input */
void LUP(double L[], double U[], double P[], double A[], int n)
{
double *A2;
A2 = new double[n*n];
memcpy(A2, A, n*n*sizeof(double));
pivot(P, A2, n);
LU(L, U, A2, n);
delete[] A2;
}
/*Calculates the determinant of a sqaure matrix using LU decomposition.
Parameters: (inputs) sqaure matrix A, size of A. Returns: determinant of A. */
double detLU(double A[], int n)
{
int i;
double det=1.0;
double *L, *U;
L = new double[n*n];
U = new double[n*n];
LU(L, U, A, n);
for (i = 0; i < n; i++) {
det *= L[lin_index(i, i, n)];
}
delete[] L;
delete[] U;
return det;
}