diff --git a/docs/api/optimizers/BootstrapFewShotWithRandomSearch.md b/docs/api/optimizers/BootstrapFewShotWithRandomSearch.md index 1a36af2a8..7b5897465 100644 --- a/docs/api/optimizers/BootstrapFewShotWithRandomSearch.md +++ b/docs/api/optimizers/BootstrapFewShotWithRandomSearch.md @@ -10,15 +10,16 @@ The constructor initializes the `BootstrapFewShotWithRandomSearch` class and set ```python class BootstrapFewShotWithRandomSearch(BootstrapFewShot): - def __init__(self, metric, teacher_settings={}, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, num_candidate_programs=16, num_threads=6): + def __init__(self, metric, teacher_settings={}, max_bootstrapped_demos=4, max_labeled_demos=16, max_rounds=1, num_candidate_programs=16, num_threads=6, max_errors=10, stop_at_score=None, metric_threshold=None): self.metric = metric self.teacher_settings = teacher_settings self.max_rounds = max_rounds - self.num_threads = num_threads - + self.stop_at_score = stop_at_score + self.metric_threshold = metric_threshold self.min_num_samples = 1 self.max_num_samples = max_bootstrapped_demos + self.max_errors = max_errors self.num_candidate_sets = num_candidate_programs self.max_num_traces = 1 + int(max_bootstrapped_demos / 2.0 * self.num_candidate_sets) @@ -32,12 +33,15 @@ class BootstrapFewShotWithRandomSearch(BootstrapFewShot): **Parameters:** - `metric` (_callable_, _optional_): Metric function to evaluate examples during bootstrapping. Defaults to `None`. -- `teacher_settings` (_dict_, _optional_): Settings for teacher predictor. Defaults to empty dictionary. +- `teacher_settings` (_dict_, _optional_): Settings for teacher predictor. Defaults to an empty dictionary. - `max_bootstrapped_demos` (_int_, _optional_): Maximum number of bootstrapped demonstrations per predictor. Defaults to 4. - `max_labeled_demos` (_int_, _optional_): Maximum number of labeled demonstrations per predictor. Defaults to 16. - `max_rounds` (_int_, _optional_): Maximum number of bootstrapping rounds. Defaults to 1. -- `num_candidate_programs` (_int_): Number of candidate programs to generate during random search. -- `num_threads` (_int_): Number of threads used for evaluation during random search. +- `num_candidate_programs` (_int_): Number of candidate programs to generate during random search. Defaults to 16. +- `num_threads` (_int_): Number of threads used for evaluation during random search. Defaults to 6. +- `max_errors` (_int_): Maximum errors permitted during evaluation. Halts run with the latest error message. Defaults to 10. Configure to 1 if no evaluation run error is desired. +- `stop_at_score` (_float_, _optional_): Score threshold for random search to stop early. Defaults to `None`. +- `metric_threshold` (_float_, _optional_): Score threshold for metric to determine successful example. Defaults to `None`. ### Method @@ -56,4 +60,4 @@ teleprompter = BootstrapFewShotWithRandomSearch(teacher_settings=dict({'lm': tea # Compile! compiled_rag = teleprompter.compile(student=RAG(), trainset=trainset) -``` \ No newline at end of file +```