This repository has been archived by the owner on Feb 25, 2018. It is now read-only.
forked from yjwong/s2-geometry-library
-
Notifications
You must be signed in to change notification settings - Fork 37
/
s2polyline.cc
574 lines (499 loc) · 20.6 KB
/
s2polyline.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// Copyright 2005 Google Inc. All Rights Reserved.
#include <set>
using std::set;
using std::multiset;
#include <vector>
using std::vector;
#include "base/commandlineflags.h"
#include "base/logging.h"
#include "util/math/matrix3x3-inl.h"
#include "s2polyline.h"
#include "util/coding/coder.h"
#include "s2cap.h"
#include "s2cell.h"
#include "s2latlng.h"
#include "s2edgeutil.h"
static const unsigned char kCurrentEncodingVersionNumber = 1;
S2Polyline::S2Polyline()
: num_vertices_(0),
vertices_(NULL) {
}
S2Polyline::S2Polyline(vector<S2Point> const& vertices)
: num_vertices_(0),
vertices_(NULL) {
Init(vertices);
}
S2Polyline::S2Polyline(vector<S2LatLng> const& vertices)
: num_vertices_(0),
vertices_(NULL) {
Init(vertices);
}
S2Polyline::~S2Polyline() {
delete[] vertices_;
}
void S2Polyline::Init(vector<S2Point> const& vertices) {
if (FLAGS_s2debug) CHECK(IsValid(vertices));
delete[] vertices_;
num_vertices_ = vertices.size();
vertices_ = new S2Point[num_vertices_];
// Check (num_vertices_ > 0) to avoid invalid reference to vertices[0].
if (num_vertices_ > 0) {
memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0]));
}
}
void S2Polyline::Init(vector<S2LatLng> const& vertices) {
delete[] vertices_;
num_vertices_ = vertices.size();
vertices_ = new S2Point[num_vertices_];
for (int i = 0; i < num_vertices_; ++i) {
vertices_[i] = vertices[i].ToPoint();
}
if (FLAGS_s2debug) {
vector<S2Point> vertex_vector(vertices_, vertices_ + num_vertices_);
CHECK(IsValid(vertex_vector));
}
}
bool S2Polyline::IsValid(vector<S2Point> const& v) {
// All vertices must be unit length.
int n = v.size();
for (int i = 0; i < n; ++i) {
if (!S2::IsUnitLength(v[i])) {
LOG(INFO) << "Vertex " << i << " is not unit length";
return false;
}
}
// Adjacent vertices must not be identical or antipodal.
for (int i = 1; i < n; ++i) {
if (v[i-1] == v[i] || v[i-1] == -v[i]) {
LOG(INFO) << "Vertices " << (i - 1) << " and " << i
<< " are identical or antipodal";
return false;
}
}
return true;
}
S2Polyline::S2Polyline(S2Polyline const* src)
: num_vertices_(src->num_vertices_),
vertices_(new S2Point[num_vertices_]) {
memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0]));
}
S2Polyline* S2Polyline::Clone() const {
return new S2Polyline(this);
}
S1Angle S2Polyline::GetLength() const {
S1Angle length;
for (int i = 1; i < num_vertices(); ++i) {
length += S1Angle(vertex(i-1), vertex(i));
}
return length;
}
S2Point S2Polyline::GetCentroid() const {
S2Point centroid;
for (int i = 1; i < num_vertices(); ++i) {
// The centroid (multiplied by length) is a vector toward the midpoint
// of the edge, whose length is twice the sin of half the angle between
// the two vertices. Defining theta to be this angle, we have:
S2Point vsum = vertex(i-1) + vertex(i); // Length == 2*cos(theta)
S2Point vdiff = vertex(i-1) - vertex(i); // Length == 2*sin(theta)
double cos2 = vsum.Norm2();
double sin2 = vdiff.Norm2();
DCHECK_GT(cos2, 0); // Otherwise edge is undefined, and result is NaN.
centroid += sqrt(sin2 / cos2) * vsum; // Length == 2*sin(theta)
}
return centroid;
}
S2Point S2Polyline::GetSuffix(double fraction, int* next_vertex) const {
DCHECK_GT(num_vertices(), 0);
// We intentionally let the (fraction >= 1) case fall through, since
// we need to handle it in the loop below in any case because of
// possible roundoff errors.
if (fraction <= 0) {
*next_vertex = 1;
return vertex(0);
}
S1Angle length_sum;
for (int i = 1; i < num_vertices(); ++i) {
length_sum += S1Angle(vertex(i-1), vertex(i));
}
S1Angle target = fraction * length_sum;
for (int i = 1; i < num_vertices(); ++i) {
S1Angle length(vertex(i-1), vertex(i));
if (target < length) {
// This interpolates with respect to arc length rather than
// straight-line distance, and produces a unit-length result.
S2Point result = S2EdgeUtil::InterpolateAtDistance(target, vertex(i-1),
vertex(i), length);
// It is possible that (result == vertex(i)) due to rounding errors.
*next_vertex = (result == vertex(i)) ? (i + 1) : i;
return result;
}
target -= length;
}
*next_vertex = num_vertices();
return vertex(num_vertices() - 1);
}
S2Point S2Polyline::Interpolate(double fraction) const {
int next_vertex;
return GetSuffix(fraction, &next_vertex);
}
double S2Polyline::UnInterpolate(S2Point const& point, int next_vertex) const {
DCHECK_GT(num_vertices(), 0);
if (num_vertices() < 2) {
return 0;
}
S1Angle length_sum;
for (int i = 1; i < next_vertex; ++i) {
length_sum += S1Angle(vertex(i-1), vertex(i));
}
S1Angle length_to_point = length_sum + S1Angle(vertex(next_vertex-1), point);
for (int i = next_vertex; i < num_vertices(); ++i) {
length_sum += S1Angle(vertex(i-1), vertex(i));
}
// The ratio can be greater than 1.0 due to rounding errors or because the
// point is not exactly on the polyline.
return min(1.0, length_to_point / length_sum);
}
S2Point S2Polyline::Project(S2Point const& point, int* next_vertex) const {
DCHECK_GT(num_vertices(), 0);
if (num_vertices() == 1) {
// If there is only one vertex, it is always closest to any given point.
*next_vertex = 1;
return vertex(0);
}
// Initial value larger than any possible distance on the unit sphere.
S1Angle min_distance = S1Angle::Radians(10);
int min_index = -1;
// Find the line segment in the polyline that is closest to the point given.
for (int i = 1; i < num_vertices(); ++i) {
S1Angle distance_to_segment = S2EdgeUtil::GetDistance(point, vertex(i-1),
vertex(i));
if (distance_to_segment < min_distance) {
min_distance = distance_to_segment;
min_index = i;
}
}
DCHECK_NE(min_index, -1);
// Compute the point on the segment found that is closest to the point given.
S2Point closest_point = S2EdgeUtil::GetClosestPoint(
point, vertex(min_index-1), vertex(min_index));
*next_vertex = min_index + (closest_point == vertex(min_index) ? 1 : 0);
return closest_point;
}
bool S2Polyline::IsOnRight(S2Point const& point) const {
DCHECK_GE(num_vertices(), 2);
int next_vertex;
S2Point closest_point = Project(point, &next_vertex);
DCHECK_GE(next_vertex, 1);
DCHECK_LE(next_vertex, num_vertices());
// If the closest point C is an interior vertex of the polyline, let B and D
// be the previous and next vertices. The given point P is on the right of
// the polyline (locally) if B, P, D are ordered CCW around vertex C.
if (closest_point == vertex(next_vertex-1) && next_vertex > 1 &&
next_vertex < num_vertices()) {
if (point == vertex(next_vertex-1))
return false; // Polyline vertices are not on the RHS.
return S2::OrderedCCW(vertex(next_vertex-2), point, vertex(next_vertex),
vertex(next_vertex-1));
}
// Otherwise, the closest point C is incident to exactly one polyline edge.
// We test the point P against that edge.
if (next_vertex == num_vertices())
--next_vertex;
return S2::RobustCCW(point, vertex(next_vertex), vertex(next_vertex-1)) > 0;
}
bool S2Polyline::Intersects(S2Polyline const* line) const {
if (num_vertices() <= 0 || line->num_vertices() <= 0) {
return false;
}
if (!GetRectBound().Intersects(line->GetRectBound())) {
return false;
}
// TODO(user) look into S2EdgeIndex to make this near linear in performance.
for (int i = 1; i < num_vertices(); ++i) {
S2EdgeUtil::EdgeCrosser crosser(
&vertex(i - 1), &vertex(i), &line->vertex(0));
for (int j = 1; j < line->num_vertices(); ++j) {
if (crosser.RobustCrossing(&line->vertex(j)) >= 0) {
return true;
}
}
}
return false;
}
void S2Polyline::Reverse() {
reverse(vertices_, vertices_ + num_vertices_);
}
S2LatLngRect S2Polyline::GetRectBound() const {
S2EdgeUtil::RectBounder bounder;
for (int i = 0; i < num_vertices(); ++i) {
bounder.AddPoint(&vertex(i));
}
return bounder.GetBound();
}
S2Cap S2Polyline::GetCapBound() const {
return GetRectBound().GetCapBound();
}
bool S2Polyline::MayIntersect(S2Cell const& cell) const {
if (num_vertices() == 0) return false;
// We only need to check whether the cell contains vertex 0 for correctness,
// but these tests are cheap compared to edge crossings so we might as well
// check all the vertices.
for (int i = 0; i < num_vertices(); ++i) {
if (cell.Contains(vertex(i))) return true;
}
S2Point cell_vertices[4];
for (int i = 0; i < 4; ++i) {
cell_vertices[i] = cell.GetVertex(i);
}
for (int j = 0; j < 4; ++j) {
S2EdgeUtil::EdgeCrosser crosser(&cell_vertices[j], &cell_vertices[(j+1)&3],
&vertex(0));
for (int i = 1; i < num_vertices(); ++i) {
if (crosser.RobustCrossing(&vertex(i)) >= 0) {
// There is a proper crossing, or two vertices were the same.
return true;
}
}
}
return false;
}
void S2Polyline::Encode(Encoder* const encoder) const {
encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 10); // sufficient
encoder->put8(kCurrentEncodingVersionNumber);
encoder->put32(num_vertices_);
encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_);
DCHECK_GE(encoder->avail(), 0);
}
bool S2Polyline::Decode(Decoder* const decoder) {
unsigned char version = decoder->get8();
if (version > kCurrentEncodingVersionNumber) return false;
num_vertices_ = decoder->get32();
delete[] vertices_;
vertices_ = new S2Point[num_vertices_];
decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_));
if (FLAGS_s2debug) {
vector<S2Point> vertex_vector(vertices_, vertices_ + num_vertices_);
CHECK(IsValid(vertex_vector));
}
return decoder->avail() >= 0;
}
namespace {
// Given a polyline, a tolerance distance, and a start index, this function
// returns the maximal end index such that the line segment between these two
// vertices passes within "tolerance" of all interior vertices, in order.
int FindEndVertex(S2Polyline const& polyline,
S1Angle const& tolerance, int index) {
DCHECK_GE(tolerance.radians(), 0);
DCHECK_LT((index + 1), polyline.num_vertices());
// The basic idea is to keep track of the "pie wedge" of angles from the
// starting vertex such that a ray from the starting vertex at that angle
// will pass through the discs of radius "tolerance" centered around all
// vertices processed so far.
// First we define a "coordinate frame" for the tangent and normal spaces
// at the starting vertex. Essentially this means picking three
// orthonormal vectors X,Y,Z such that X and Y span the tangent plane at
// the starting vertex, and Z is "up". We use the coordinate frame to
// define a mapping from 3D direction vectors to a one-dimensional "ray
// angle" in the range (-Pi, Pi]. The angle of a direction vector is
// computed by transforming it into the X,Y,Z basis, and then calculating
// atan2(y,x). This mapping allows us to represent a wedge of angles as a
// 1D interval. Since the interval wraps around, we represent it as an
// S1Interval, i.e. an interval on the unit circle.
Matrix3x3_d frame;
S2Point const& origin = polyline.vertex(index);
S2::GetFrame(origin, &frame);
// As we go along, we keep track of the current wedge of angles and the
// distance to the last vertex (which must be non-decreasing).
S1Interval current_wedge = S1Interval::Full();
double last_distance = 0;
for (++index; index < polyline.num_vertices(); ++index) {
S2Point const& candidate = polyline.vertex(index);
double distance = origin.Angle(candidate);
// We don't allow simplification to create edges longer than 90 degrees,
// to avoid numeric instability as lengths approach 180 degrees. (We do
// need to allow for original edges longer than 90 degrees, though.)
if (distance > M_PI/2 && last_distance > 0) break;
// Vertices must be in increasing order along the ray, except for the
// initial disc around the origin.
if (distance < last_distance && last_distance > tolerance.radians()) break;
last_distance = distance;
// Points that are within the tolerance distance of the origin do not
// constrain the ray direction, so we can ignore them.
if (distance <= tolerance.radians()) continue;
// If the current wedge of angles does not contain the angle to this
// vertex, then stop right now. Note that the wedge of possible ray
// angles is not necessarily empty yet, but we can't continue unless we
// are willing to backtrack to the last vertex that was contained within
// the wedge (since we don't create new vertices). This would be more
// complicated and also make the worst-case running time more than linear.
S2Point direction = S2::ToFrame(frame, candidate);
double center = atan2(direction.y(), direction.x());
if (!current_wedge.Contains(center)) break;
// To determine how this vertex constrains the possible ray angles,
// consider the triangle ABC where A is the origin, B is the candidate
// vertex, and C is one of the two tangent points between A and the
// spherical cap of radius "tolerance" centered at B. Then from the
// spherical law of sines, sin(a)/sin(A) = sin(c)/sin(C), where "a" and
// "c" are the lengths of the edges opposite A and C. In our case C is a
// 90 degree angle, therefore A = asin(sin(a) / sin(c)). Angle A is the
// half-angle of the allowable wedge.
double half_angle = asin(sin(tolerance.radians()) / sin(distance));
S1Interval target = S1Interval::FromPoint(center).Expanded(half_angle);
current_wedge = current_wedge.Intersection(target);
DCHECK(!current_wedge.is_empty());
}
// We break out of the loop when we reach a vertex index that can't be
// included in the line segment, so back up by one vertex.
return index - 1;
}
}
void S2Polyline::SubsampleVertices(S1Angle const& tolerance,
vector<int>* indices) const {
indices->clear();
if (num_vertices() == 0) return;
indices->push_back(0);
S1Angle clamped_tolerance = max(tolerance, S1Angle::Radians(0));
for (int index = 0; index + 1 < num_vertices(); ) {
int next_index = FindEndVertex(*this, clamped_tolerance, index);
// Don't create duplicate adjacent vertices.
if (vertex(next_index) != vertex(index)) {
indices->push_back(next_index);
}
index = next_index;
}
}
bool S2Polyline::ApproxEquals(S2Polyline const* b, double max_error) const {
if (num_vertices() != b->num_vertices()) return false;
for (int offset = 0; offset < num_vertices(); ++offset) {
if (!S2::ApproxEquals(vertex(offset), b->vertex(offset), max_error)) {
return false;
}
}
return true;
}
namespace {
// Return the first i > "index" such that the ith vertex of "pline" is not at
// the same point as the "index"th vertex. Returns pline.num_vertices() if
// there is no such value of i.
inline int NextDistinctVertex(S2Polyline const& pline, int index) {
S2Point const& initial = pline.vertex(index);
do {
++index;
} while (index < pline.num_vertices() && pline.vertex(index) == initial);
return index;
}
// This struct represents a search state in the NearlyCoversPolyline algorithm
// below. See the description of the algorithm for details.
struct SearchState {
inline SearchState(int i_val, int j_val, bool i_in_progress_val)
: i(i_val), j(j_val), i_in_progress(i_in_progress_val) {}
int i;
int j;
bool i_in_progress;
};
} // namespace
namespace std {
template<>
struct less<SearchState> {
// This operator is needed for storing SearchStates in a set. The ordering
// chosen has no special meaning.
inline bool operator()(SearchState const& lhs, SearchState const& rhs) const {
if (lhs.i < rhs.i) return true;
if (lhs.i > rhs.i) return false;
if (lhs.j < rhs.j) return true;
if (lhs.j > rhs.j) return false;
return !lhs.i_in_progress && rhs.i_in_progress;
}
};
} // namespace std
bool S2Polyline::NearlyCoversPolyline(S2Polyline const& covered,
S1Angle const& max_error) const {
// NOTE: This algorithm is described assuming that adjacent vertices in a
// polyline are never at the same point. That is, the ith and i+1th vertices
// of a polyline are never at the same point in space. The implementation
// does not make this assumption.
// DEFINITIONS:
// - edge "i" of a polyline is the edge from the ith to i+1th vertex.
// - covered_j is a polyline consisting of edges 0 through j of "covered."
// - this_i is a polyline consisting of edges 0 through i of this polyline.
//
// A search state is represented as an (int, int, bool) tuple, (i, j,
// i_in_progress). Using the "drive a car" analogy from the header comment, a
// search state signifies that you can drive one car along "covered" from its
// first vertex through a point on its jth edge, and another car along this
// polyline from some point on or before its ith edge to a to a point on its
// ith edge, such that no car ever goes backward, and the cars are always
// within "max_error" of each other. If i_in_progress is true, it means that
// you can definitely drive along "covered" through the jth vertex (beginning
// of the jth edge). Otherwise, you can definitely drive along "covered"
// through the point on the jth edge of "covered" closest to the ith vertex of
// this polyline.
//
// The algorithm begins by finding all edges of this polyline that are within
// "max_error" of the first vertex of "covered," and adding search states
// representing all of these possible starting states to the stack of
// "pending" states.
//
// The algorithm proceeds by popping the next pending state,
// (i,j,i_in_progress), off of the stack. First it checks to see if that
// state represents finding a valid covering of "covered" and returns true if
// so. Next, if the state represents reaching the end of this polyline
// without finding a successful covering, the algorithm moves on to the next
// state in the stack. Otherwise, if state (i+1,j,false) is valid, it is
// added to the stack of pending states. Same for state (i,j+1,true).
//
// We need the stack because when "i" and "j" can both be incremented,
// sometimes only one choice leads to a solution. We use a set to keep track
// of visited states to avoid duplicating work. With the set, the worst-case
// number of states examined is O(n+m) where n = this->num_vertices() and m =
// covered.num_vertices(). Without it, the amount of work could be as high as
// O((n*m)^2). Using set, the running time is O((n*m) log (n*m)).
//
// TODO(user): Benchmark this, and see if the set is worth it.
vector<SearchState> pending;
set<SearchState> done;
// Find all possible starting states.
for (int i = 0, next_i = NextDistinctVertex(*this, 0);
next_i < this->num_vertices();
i = next_i, next_i = NextDistinctVertex(*this, next_i)) {
S2Point closest_point = S2EdgeUtil::GetClosestPoint(
covered.vertex(0), this->vertex(i), this->vertex(next_i));
if (closest_point != this->vertex(next_i) &&
S1Angle(closest_point, covered.vertex(0)) <= max_error) {
pending.push_back(SearchState(i, 0, true));
}
}
while (!pending.empty()) {
SearchState const state = pending.back();
pending.pop_back();
if (!done.insert(state).second) continue;
int const next_i = NextDistinctVertex(*this, state.i);
int const next_j = NextDistinctVertex(covered, state.j);
if (next_j == covered.num_vertices()) {
return true;
} else if (next_i == this->num_vertices()) {
continue;
}
S2Point i_begin, j_begin;
if (state.i_in_progress) {
j_begin = covered.vertex(state.j);
i_begin = S2EdgeUtil::GetClosestPoint(
j_begin, this->vertex(state.i), this->vertex(next_i));
} else {
i_begin = this->vertex(state.i);
j_begin = S2EdgeUtil::GetClosestPoint(
i_begin, covered.vertex(state.j), covered.vertex(next_j));
}
if (S2EdgeUtil::IsEdgeBNearEdgeA(j_begin, covered.vertex(next_j),
i_begin, this->vertex(next_i),
max_error)) {
pending.push_back(SearchState(next_i, state.j, false));
}
if (S2EdgeUtil::IsEdgeBNearEdgeA(i_begin, this->vertex(next_i),
j_begin, covered.vertex(next_j),
max_error)) {
pending.push_back(SearchState(state.i, next_j, true));
}
}
return false;
}