Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Traceback (most recent call last): #71

Open
Dontmindmes opened this issue Feb 23, 2023 · 5 comments
Open

Traceback (most recent call last): #71

Dontmindmes opened this issue Feb 23, 2023 · 5 comments

Comments

@Dontmindmes
Copy link

Dontmindmes commented Feb 23, 2023

Hello when i execute the following code i get the following error (Windows 11)
`

import torch
from fairseq.models.transformer_lm import TransformerLanguageModel
m = TransformerLanguageModel.from_pretrained(
"checkpoints",
"checkpoint_avg.pt",
"data",
tokenizer='moses',
bpe='fastbpe',
bpe_codes="data/bpecodes",
min_len=100,
max_len_b=1024)
m.cuda()
src_tokens = m.encode("COVID-19 is")
generate = m.generate([src_tokens], beam=5)[0]
output = m.decode(generate[0]["tokens"])
print(output)

`

`

2023-02-22 19:39:41 | INFO | fairseq.file_utils | loading archive file checkpoints
2023-02-22 19:39:41 | INFO | fairseq.file_utils | loading archive file data
Traceback (most recent call last):
File "C:\Users\Gilgamesh\Documents\Advanced A.I\Bio\code\BioGPT\bio.py", line 3, in
m = TransformerLanguageModel.from_pretrained(
File "C:\Python310\lib\site-packages\fairseq\models\fairseq_model.py", line 267, in from_pretrained
x = hub_utils.from_pretrained(
File "C:\Python310\lib\site-packages\fairseq\hub_utils.py", line 73, in from_pretrained
models, args, task = checkpoint_utils.load_model_ensemble_and_task(
File "C:\Python310\lib\site-packages\fairseq\checkpoint_utils.py", line 432, in load_model_ensemble_and_task
task = tasks.setup_task(cfg.task)
File "C:\Python310\lib\site-packages\fairseq\tasks_init_.py", line 42, in setup_task
assert (
AssertionError: Could not infer task type from {'_name': 'language_modeling_prompt', 'data': 'data', 'sample_break_mode': 'none', 'tokens_per_sample': 2048, 'output_dictionary_size': -1, 'self_target': False, 'future_target': False, 'past_target': False, 'add_bos_token': False, 'max_target_positions': 2048, 'shorten_method': 'none', 'shorten_data_split_list': '', 'pad_to_fixed_length': False, 'pad_to_fixed_bsz': False, 'seed': 1, 'batch_size': None, 'batch_size_valid': None, 'dataset_impl': None, 'data_buffer_size': 10, 'tpu': False, 'use_plasma_view': False, 'plasma_path': '/tmp/plasma', 'source_lang': None, 'target_lang': None, 'max_source_positions': 1900, 'manual_prompt': None, 'learned_prompt': 9, 'learned_prompt_pattern': 'learned', 'prefix': False, 'sep_token': ''}. Available argparse tasks: dict_keys(['audio_pretraining', 'audio_finetuning', 'cross_lingual_lm', 'denoising', 'speech_to_text', 'text_to_speech', 'frm_text_to_speech', 'hubert_pretraining', 'language_modeling', 'legacy_masked_lm', 'masked_lm', 'multilingual_denoising', 'multilingual_language_modeling', 'multilingual_masked_lm', 'speech_unit_modeling', 'translation', 'multilingual_translation', 'online_backtranslation', 'semisupervised_translation', 'sentence_prediction', 'sentence_prediction_adapters', 'sentence_ranking', 'simul_speech_to_text', 'simul_text_to_text', 'speech_to_speech', 'translation_from_pretrained_bart', 'translation_from_pretrained_xlm', 'translation_lev', 'translation_multi_simple_epoch', 'dummy_lm', 'dummy_masked_lm', 'dummy_mt']). Available hydra tasks: dict_keys(['audio_pretraining', 'audio_finetuning', 'hubert_pretraining', 'language_modeling', 'masked_lm', 'multilingual_language_modeling', 'speech_unit_modeling', 'translation', 'sentence_prediction', 'sentence_prediction_adapters', 'simul_text_to_text', 'translation_from_pretrained_xlm', 'translation_lev', 'dummy_lm', 'dummy_masked_lm'])

`

@Kristian-A
Copy link

I am getting the same issue when trying to run QA-PubMedQA-BioGPT-Large model using:

m = TransformerLanguageModel.from_pretrained(
    "checkpoints/QA-PubMedQA-BioGPT-Large",
    "checkpoint_avg.pt",
    "data",
    tokenizer="moses",
    bpe="fastbpe",
    bpe_codes="data/bpecodes",
    min_len=100,
    max_len_b=1024,
)

@Dontmindmes
Copy link
Author

I am getting the same issue when trying to run QA-PubMedQA-BioGPT-Large model using:

m = TransformerLanguageModel.from_pretrained(
    "checkpoints/QA-PubMedQA-BioGPT-Large",
    "checkpoint_avg.pt",
    "data",
    tokenizer="moses",
    bpe="fastbpe",
    bpe_codes="data/bpecodes",
    min_len=100,
    max_len_b=1024,
)

What was the error you were getting

@Kristian-A
Copy link

Kristian-A commented Feb 27, 2023

File "/Users/kristian/Desktop/medical-gpt/biogpt/BioGPT/test.py", line 4, in <module>
    m = TransformerLanguageModel.from_pretrained(
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/fairseq/models/fairseq_model.py", line 267, in from_pretrained
    x = hub_utils.from_pretrained(
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/fairseq/hub_utils.py", line 73, in from_pretrained
    models, args, task = checkpoint_utils.load_model_ensemble_and_task(
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/fairseq/checkpoint_utils.py", line 432, in load_model_ensemble_and_task
    task = tasks.setup_task(cfg.task)
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/fairseq/tasks/__init__.py", line 42, in setup_task
    assert (
AssertionError: Could not infer task type from {'_name': 'language_modeling_prompt', 'data': 'data', 
'sample_break_mode': 'none', 'tokens_per_sample': 2048, 'output_dictionary_size': -1, 'self_target': False, 'future_target': 
False, 'past_target': False, 'add_bos_token': False, 'max_target_positions': 2048, 'shorten_method': 'none', 
'shorten_data_split_list': '', 'pad_to_fixed_length': False, 'pad_to_fixed_bsz': False, 'seed': 1, 'batch_size': None, 
'batch_size_valid': None, 'dataset_impl': None, 'data_buffer_size': 10, 'tpu': False, 'use_plasma_view': False, 
'plasma_path': '/tmp/plasma', 'source_lang': None, 'target_lang': None, 'max_source_positions': 1900, 'manual_prompt': 
None, 'learned_prompt': 9, 'learned_prompt_pattern': 'learned', 'prefix': False, 'sep_token': '<seqsep>'}. Available 
argparse tasks: dict_keys(['sentence_prediction', 'sentence_prediction_adapters', 'speech_unit_modeling', 
'hubert_pretraining', 'denoising', 'multilingual_denoising', 'translation', 'multilingual_translation', 
'translation_from_pretrained_bart', 'translation_lev', 'language_modeling', 'speech_to_text', 'legacy_masked_lm', 
'text_to_speech', 'speech_to_speech', 'online_backtranslation', 'simul_speech_to_text', 'simul_text_to_text', 
'audio_pretraining', 'semisupervised_translation', 'frm_text_to_speech', 'cross_lingual_lm', 
'translation_from_pretrained_xlm', 'multilingual_language_modeling', 'audio_finetuning', 'masked_lm', 'sentence_ranking',
 'translation_multi_simple_epoch', 'multilingual_masked_lm', 'dummy_lm', 'dummy_masked_lm', 'dummy_mt']). Available 
hydra tasks: dict_keys(['sentence_prediction', 'sentence_prediction_adapters', 'speech_unit_modeling', 
'hubert_pretraining', 'translation', 'translation_lev', 'language_modeling', 'simul_text_to_text', 'audio_pretraining', 
'translation_from_pretrained_xlm', 'multilingual_language_modeling', 'audio_finetuning', 'masked_lm', 'dummy_lm', 
'dummy_masked_lm'])

@mx60s
Copy link

mx60s commented Apr 20, 2023

Hello @Kristian-A @Dontmindmes, were you ever able to fix this?

I'm having the same issue. I've fine tuned BioGPT on a relation extraction task, and the training with fairseq was just fine, but now I can't evaluate it.

@shodhak
Copy link

shodhak commented Nov 30, 2023

Was anyone able to solve this?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants