-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolodwg.py
328 lines (263 loc) · 13.5 KB
/
yolodwg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
from numpy.lib.arraysetops import isin
from tqdm import tqdm
import time
import json
from pathlib import Path
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import StepLR
from dataset import DwgDataset, EntityDataset
from models.DwgKeyPointsModel import DwgKeyPointsModel
from models.DwgKeyPointsResNet50 import DwgKeyPointsResNet50
from models.DwgKeyPointsYolov4 import DwgKeyPointsYolov4
from models.DwgKeyPointRcnn import DwgKeyPointsRcnn
from models.torch_utils import bbox_ious
from models.utils import bbox_iou, nms_conf_suppression
from plot import plot_batch_grid, plot_loader_predictions
from loss import Yolo_loss, bboxes_iou, non_zero_loss
from config import get_ram_mem_usage, get_gpu_mem_usage
import config
from voc_dataset import VocDataloader, VocDataset
#------------------------------
def save_checkpoint(model, optimizer, checkpoint_path, iou=0):
folder = Path(checkpoint_path)
folder.parent.mkdir(parents=True, exist_ok=True)
torch.save({
'num_boxes' : model.max_boxes,
'n_box_classes' : model.n_box_classes,
'model_state_dict':model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'iou': iou,
}, checkpoint_path)
def train_epoch(model, loader, device, criterion, optimizer, scheduler=None, epoch=0, epochs=0, plot_prediction=False, plot_folder='runs'):
'''
runs entire loader via model.train()
calculates loss and precision metrics
plots predictions and truth (time consuming)
'''
model.train()
running_loss = 0.0
counter = 0
ch_l = 0
progress_bar = tqdm(enumerate(loader), total=len(loader))
for batch_i, (imgs, boxes, keypoints) in progress_bar:
counter += 1
coord_l = 0
cls_l = 0
optimizer.zero_grad()
imgs = imgs.to(device)
if isinstance(model, DwgKeyPointsRcnn):
keypoints = keypoints.to(device)
out = model(imgs, keypoints)
loss = out['loss_keypoint']
counter = 1
if isinstance(model, DwgKeyPointsYolov4) and isinstance(criterion, Yolo_loss):
boxes = boxes.to(device)
out = model(imgs)
loss, loss_xy, loss_wh, loss_obj, loss_cls, loss_l2 = criterion(out, boxes)
else:
keypoints = keypoints.to(device)
out = model(imgs)
loss, coord_l, cls_l = criterion(out, keypoints)
#ch_l = my_chamfer_distance(out[:, :, :2],targets[:, :, 2:4])
running_loss += loss.item()
loss.backward()
optimizer.step()
if scheduler is not None:
scheduler.step()
progress_bar.set_description(f'[{epoch} / {epochs}]Train. GPU:{get_gpu_mem_usage():.1f}G RAM:{get_ram_mem_usage():.0f}% Running loss: {running_loss / counter:.4f}')
return running_loss / counter
def val_epoch(model, loader, device, criterion=None, epoch=0, epochs=0, plot_prediction=False, plot_folder=None):
'''
runs entire loader via model.eval()
calculates loss and precision metrics
plots predictions and truth (time consuming)
'''
model.eval()
with torch.no_grad():
progress_bar = tqdm(enumerate(loader), total=len(loader))
mean_ious = []
for batch_i, (imgs, true_boxes, keypoints) in progress_bar:
img_size = imgs.shape[2]
mean_iou = 0
# keypoints = keypoints.to(config.device)
imgs = imgs.to(device)
out = model(imgs)
predicted_boxes = out[0] # batch * 1008 * max_boxes * 4:[x1 y1 x2 y2]
predicted_boxes *= img_size
confidences = out[1] # batch * 1008 * n_classes
predictions = nms_conf_suppression(box_array=predicted_boxes, confs=confidences, conf_thresh=0.1, nms_thresh=0.2)
# TODO: mean iou(boxes, true_boxes) mention device TODO: Too slow here
pred_counter = 0
for img_i, (pred, trueb) in enumerate(zip(predictions, true_boxes)):
for single_true_box in trueb[trueb[:, 4] > 0]:# exclude empty truth
pred_counter += 1
max_iou = 0
for single_predicted_box in pred:
iou_ = bbox_iou(single_predicted_box, single_true_box)
max_iou = max(iou_, max_iou)
mean_iou += max_iou
mean_iou /= pred_counter
mean_ious.append(mean_iou)
progress_bar.set_description(f"[{epoch} / {epochs}]Val . Mean IOU:{mean_iou:.4f}.")
n_batches_to_plot = 4
if (batch_i < n_batches_to_plot) and plot_prediction and plot_folder is not None:
plot_batch_grid(
input_images=imgs,
true_boxes=true_boxes,
true_keypoints=keypoints,
predictions=predictions,
plot_save_file=f'{plot_folder}/val_{epoch}_{batch_i}.png')
plt.close()
return np.mean(mean_ious)
def run(
image_folder='data/images',
data_file_path='data/ids128.json',
batch_size=4,
epochs=20,
checkpoint_interval=10,
lr=0.001,
validate=True,
limit_number_of_records=None,
checkpoint_path=None
):
if data_file_path=='PascalVoc':
train_voc = VocDataset('data/voc/train_annotation.txt',limit_number_of_records=limit_number_of_records)
val_voc = VocDataset('data/voc/test_annotation.txt',limit_number_of_records=limit_number_of_records)
dwg_dataset = VocDataloader(train_voc, val_voc, batch_size=batch_size)
else:
# create dataset from images or from cache
# for debug: take only small number of records from dataset
entities = EntityDataset(limit_number_of_records=limit_number_of_records)
if data_file_path.endswith('.json'):
entities.from_json_ids_pickle_labels_img_folder(ids_file=data_file_path, image_folder=image_folder)
elif data_file_path.endswith('.cache'):
entities.from_cache(cache_file=data_file_path)
dwg_dataset = DwgDataset(entities=entities, batch_size=batch_size)
train_loader = dwg_dataset.train_loader
val_loader = dwg_dataset.val_loader
assert len(train_loader) > 0 and len(val_loader) > 0, "No data"
num_classes = dwg_dataset.num_classes
# create model
#model = DwgKeyPointsModel(max_points=dwg_dataset.entities.max_labels, num_pnt_classes=dwg_dataset.entities.num_pnt_classes, num_coordinates=dwg_dataset.entities.num_coordinates, num_img_channels=dwg_dataset.entities.num_image_channels)
# model = DwgKeyPointsResNet50(pretrained=True, requires_grad=False, max_points=dwg_dataset.entities.max_labels, num_pnt_classes=dwg_dataset.entities.num_pnt_classes, num_coordinates=dwg_dataset.entities.num_coordinates, num_img_channels=dwg_dataset.entities.num_image_channels)
model = DwgKeyPointsYolov4(
pretrained=True,
requires_grad=True,
size=32, #vanilla = 32
max_boxes=dwg_dataset.max_boxes,
num_pnt_classes=dwg_dataset.max_keypoints_per_box,
n_box_classes=num_classes,
num_coordinates=dwg_dataset.num_coordinates,
num_img_channels=dwg_dataset.num_image_channels)
# n_labels = entities.max_labels // entities.num_pnt_classes
#model = DwgKeyPointsRcnn(
# requires_grad=False,
# pretrained=True,
# max_labels=n_labels,
# num_pnt_classes=dwg_dataset.entities.num_pnt_classes,
# num_coordinates=dwg_dataset.entities.num_coordinates,
# num_img_channels=dwg_dataset.entities.num_image_channels)
model.to(config.device)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
#optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.99)
scheduler = None
#scheduler = StepLR(optimizer, step_size=10, gamma=0.95)
#criterion = non_zero_loss(coordinate_loss_name="MSELoss", coordinate_loss_multiplier=1, class_loss_multiplier=1)
criterion = Yolo_loss(device=config.device, batch=batch_size, n_classes=num_classes, image_size=dwg_dataset.img_size)
if checkpoint_path:
if Path(checkpoint_path).exists():
checkpoint = torch.load(checkpoint_path)
model.max_boxes = checkpoint['max_boxes']
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# logging to TB
runs_dir = 'runs'
# autoincrement run (better to do it after loading model and dataset - less folders in debug)
run_number = 1
for log_dir in os.walk(runs_dir):
for dirno in log_dir[1]:
if dirno.isdigit():
no = int(dirno)
if no >= run_number:
run_number = no + 1
tb_log_path = f'{runs_dir}/{run_number}'
#https://stackoverflow.com/questions/40426502/is-there-a-way-to-suppress-the-messages-tensorflow-prints
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tb = SummaryWriter(tb_log_path)
best_iou = 0.0
start = time.time()
for epoch in range(epochs):
train_loss = train_epoch(
model=model,
loader=train_loader,
device=config.device,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
epoch=epoch,
epochs=epochs,
plot_prediction=False,
plot_folder=tb_log_path)
checkpoint_is_here = checkpoint_interval is not None and epoch % checkpoint_interval == 0
if checkpoint_is_here:
if validate:
val_iou = val_epoch(
model=model,
loader=val_loader,
device=config.device,
criterion=criterion,
epoch=epoch,
epochs=epochs,
plot_folder=tb_log_path,
plot_prediction=True)
last_epoch = (epoch == epochs - 1)
checkpoint_is_better = val_iou != 0 and (val_iou >= best_iou)
if checkpoint_is_here or last_epoch:
#save_checkpoint(model, optimizer, checkpoint_path=f'{tb_log_path}/checkpoint{epoch}.weights', iou=val_iou)
# Display generated figure in tensorboard
figs = plot_loader_predictions(loader=val_loader, model=model, epoch=epoch, plot_folder=tb_log_path)
for i, fig in enumerate(figs):
tb.add_figure(tag=f'run_{run_number}', figure=fig, global_step=epoch, close=True)
plt.close()
# save checkpoint for best results
if checkpoint_is_better or last_epoch:
best_iou = val_iou
save_checkpoint(model, optimizer, checkpoint_path=f'{tb_log_path}/best.weights', iou=val_iou)
# print(f"Best recall: {best_recall:.4f} Best precision: {best_precision:.4f}")
print(f'[{epoch} / {epochs}]@{(time.time() - start):.0f} sec. train loss: {train_loss:.4f} val_iou:{val_iou:.4f} \n')
tb.add_scalar("accuracy/train_loss", train_loss, epoch)
tb.add_scalar("accuracy/iou", val_iou, epoch)
print(f'[DONE] @{time.time() - start:.0f} sec. Training achieved best iou: {best_iou:.4f}. This run data is at "{tb_log_path}"')
tb.close()
# TODO: augment: rotate, flip, crop
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='data/ids256.cache', help='Path to ids.json or dataset.cache of dataset')
parser.add_argument('--image-folder', type=str, default='data/images', help='Path to source images')
parser.add_argument('--limit-number-of-records', type=int, default=None, help='Take only this maximum records from dataset')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch-size', type=int, default=32, help='Size of batch')
parser.add_argument('--lr', type=float, default=0.008, help='Starting learning rate')
parser.add_argument('--checkpoint-interval', type=int, default=10, help='Save checkpoint every n epoch')
parser.add_argument('--checkpoint', type=str, default=None, help='Path to starting checkpoint weights')
opt = parser.parse_args()
return vars(opt) # https://stackoverflow.com/questions/16878315/what-is-the-right-way-to-treat-python-argparse-namespace-as-a-dictionary
if __name__ == "__main__":
opt = parse_opt()
run(
image_folder=opt['image_folder'],
data_file_path=opt['data'],
batch_size=opt['batch_size'],
epochs=opt['epochs'],
checkpoint_interval=opt['checkpoint_interval'],
lr=opt['lr'],
validate=True,
limit_number_of_records=opt['limit_number_of_records'],
checkpoint_path=opt['checkpoint'])