Skip to content

mihuzx/ggPlantmap

Repository files navigation

ggPlantmap

Version Beta.1

Overview

ggPlantmap is an open-source R package with the goal of facilitating the generation of informative ggplot maps from plant images to explore quantitative cell-type specific data. When combined with external quantitative data, ggPlantmap can be used for the visualization and displaying of spatial profiles in distinct parts/cells of the plant (Figure 1). The conceptual workflow is like other ggplot based geographic map packages. Included in the package there is a set of pre-loaded maps created from previously published plant images that can be directly inserted into a ggplot coding workflow. ggPlantmap enables users to plot heatmap signatures of gene expression or any spatial quantitative data onto plant images providing a customizable and extensible platform for visualizing, and analyzing spatial quantitative patterns within specific plant regions. This package uses the flexibility of the well-known ggplot2 R package to allow users to tailor maps to their specific research questions.

ggPlantmap Fuides

We created a step-by-stepuser guide to help users navigate through the package. We also created a step-by-step guide with tips on how to create your ggPlantmap.

Below you can find general instructions on how to navigate through ggPlantmap.

Installation

##install devtools (if you haven't already)
install.packages("devtools")
library(devtools)

## Installing from a github respository
install_github("leonardojo/ggPlantmap")

What is a ggPlantmap?

Each unique ggPlantmap is a table (tibble) object with points coordinates (x,y) of specific polygons extracted from plant images.

library(ggPlantmap)
head(ggPm.At.roottip.longitudinal)
#> # A tibble: 6 × 7
#>   ROI.name    Level1   Level2 ROI.id point     x     y
#>   <chr>       <chr>    <chr>   <int> <int> <dbl> <dbl>
#> 1 Meristem.QC Meristem QC          1     1  121. -323.
#> 2 Meristem.QC Meristem QC          1     2  127. -315.
#> 3 Meristem.QC Meristem QC          1     3  134. -315.
#> 4 Meristem.QC Meristem QC          1     4  149. -318.
#> 5 Meristem.QC Meristem QC          1     5  149. -329.
#> 6 Meristem.QC Meristem QC          1     6  134. -327.

Where can I find the list of all ggPlantmaps objects?

The whole list of pre-loaded ggPlantmap objects can be found in the table ggPm.summary. You can find the description of ggPlantmaps, as well as information of its creator. Because most ggPlantmaps are based on previously published plant images, the references for each specific image can also be found in the summary table. We hope to keep updating the ggPlantmap catalog, with the help of the plant research community.

head(ggPm.summary)
#> # A tibble: 6 × 9
#>   ggPlantmap.name    Species Tissue Type  Descr…¹ Layers Image…² Made.by Conta…³
#>   <chr>              <chr>   <chr>  <chr> <chr>   <chr>  <chr>   <chr>   <chr>  
#> 1 ggPm.At.roottip.c… Arabid… root   cros… Cross-… Cells  https:… Leonar… jo.leo…
#> 2 ggPm.At.roottip.l… Arabid… root   long… Longit… Cells  https:… Leonar… jo.leo…
#> 3 ggPm.At.3weekrose… Arabid… roset… top … Top vi… Leaves https:… Leonar… jo.leo…
#> 4 ggPm.At.leafepide… Arabid… leaf … top … Top vi… Cells  https:… Leonar… jo.leo…
#> 5 ggPm.At.leaf.cros… Arabid… leaves cros… Cross-… Cells  https:… Leonar… jo.leo…
#> 6 ggPm.At.seed.devs… Arabid… seed   deve… Diagra… Cells… https:… Leonar… jo.leo…
#> # … with abbreviated variable names ¹​Description, ²​Image.Reference,
#> #   ³​Contact.Info

##Listing all the ggPlantmap objects
ggPm.summary$ggPlantmap.name
#>  [1] "ggPm.At.roottip.crosssection"          
#>  [2] "ggPm.At.roottip.longitudinal"          
#>  [3] "ggPm.At.3weekrosette.topview"          
#>  [4] "ggPm.At.leafepidermis.topview"         
#>  [5] "ggPm.At.leaf.crosssection"             
#>  [6] "ggPm.At.seed.devseries"                
#>  [7] "ggPm.At.earlyembryogenesis.devseries"  
#>  [8] "ggPm.At.shootapex.longitudinal"        
#>  [9] "ggPm.At.inflorescencestem.crosssection"
#> [10] "ggPm.Sl.root.crosssection"             
#> [11] "ggPm.At.leaf.topview"                  
#> [12] "ggPm.At.rootelong.longitudinal"        
#> [13] "ggPm.At.rootmatur.crosssection"        
#> [14] "ggPm.At.flower.diagram"                
#> [15] "ggPm.At.lateralroot.devseries"         
#> [16] "ggPm.Ms.root.crosssection"

General usage

All ggPlantmaps are pre-loaded in the package, you can call them directly in your R environment by typing their name.

library(ggPlantmap)
##examples
ggPm.At.roottip.longitudinal
#> # A tibble: 1,541 × 7
#>    ROI.name    Level1   Level2 ROI.id point     x     y
#>    <chr>       <chr>    <chr>   <int> <int> <dbl> <dbl>
#>  1 Meristem.QC Meristem QC          1     1  121. -323.
#>  2 Meristem.QC Meristem QC          1     2  127. -315.
#>  3 Meristem.QC Meristem QC          1     3  134. -315.
#>  4 Meristem.QC Meristem QC          1     4  149. -318.
#>  5 Meristem.QC Meristem QC          1     5  149. -329.
#>  6 Meristem.QC Meristem QC          1     6  134. -327.
#>  7 Meristem.QC Meristem QC          2     1  150. -330.
#>  8 Meristem.QC Meristem QC          2     2  150. -318.
#>  9 Meristem.QC Meristem QC          2     3  156. -317.
#> 10 Meristem.QC Meristem QC          2     4  164. -316.
#> # … with 1,531 more rows
ggPm.At.roottip.crosssection
#> # A tibble: 1,408 × 5
#>    ROI.name  ROI.id point     x     y
#>    <chr>      <int> <int> <dbl> <dbl>
#>  1 Epidermis      1     1  156. -333.
#>  2 Epidermis      1     2  167. -332.
#>  3 Epidermis      1     3  177. -340.
#>  4 Epidermis      1     4  176. -380.
#>  5 Epidermis      1     5  173. -384.
#>  6 Epidermis      1     6  165. -387.
#>  7 Epidermis      1     7  157. -387.
#>  8 Epidermis      1     8  145. -381.
#>  9 Epidermis      1     9  142. -377.
#> 10 Epidermis      1    10  138. -371.
#> # … with 1,398 more rows
ggPm.Ms.root.crosssection
#> # A tibble: 2,441 × 5
#>    ROI.name ROI.id point     x     y
#>    <chr>     <int> <int> <dbl> <dbl>
#>  1 C1            1     1  270. -308.
#>  2 C1            1     2  234. -287.
#>  3 C1            1     3  241. -257.
#>  4 C1            1     4  271. -238.
#>  5 C1            1     5  285. -243.
#>  6 C1            1     6  307. -270.
#>  7 C1            1     7  298. -289.
#>  8 C1            1     8  284. -302.
#>  9 C1            2     1  285. -242.
#> 10 C1            2     2  308. -270.
#> # … with 2,431 more rows

How can I plot a ggPlantmap?

You can use the ggPlantmap.plot() function to quickly visualize your ggPlantmap.

##ggPlantmap.plot(data,layer,linewidth=0.5,show.legend=T)
ggPlantmap.plot(ggPm.At.roottip.longitudinal,ROI.id,linewidth = 1,show.legend = F)

If you have experience with ggplot, you can feed your a ggPlantmap object into a ggplot with the geom_polygon() function.

library(ggplot2)
ggplot(ggPm.At.roottip.longitudinal,aes(x,y)) +
  geom_polygon(aes(group=ROI.id,fill=factor(ROI.id)),show.legend = F,colour="black",linewidth=1) +
  coord_fixed() ## important to keep the aspect ratio of the plot

How can I colormap distinct layers of a ggPlantmap?

Because each polygon on ggPlantmap is characterized by specific levels (examples: Region,Stage,Part), you can color map them individually. Using ggPlantmap, you can color map based on unique layers of the ggPlantmap. Just specify the column you want to colormap in the layer option of the function. ggPlantmap.plot() is based on ggplot so you can add specific modifications to it using ggplot coding logic.

library(ggplot2)
library(cowplot)

head(ggPm.At.seed.devseries)
#> # A tibble: 6 × 8
#>   ROI.name                           Stage Part  Region ROI.id point     x     y
#>   <chr>                              <chr> <chr> <chr>   <int> <int> <dbl> <dbl>
#> 1 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     1  277. -693.
#> 2 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     2  280. -689.
#> 3 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     3  280. -685.
#> 4 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     4  285. -681.
#> 5 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     5  286. -675.
#> 6 Preglobular.seedcoat.Distal Seed … Preg… seed… Dista…      1     6  286. -669.

## Stage: Seed development stage
## Part: Distinct parts of a seed (Seed coat, Endosperm and Embryo)
## Region: Specific regions of each part of the Arabidopsis seed
## Reference: Belmonte, Mark F., et al. "Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed." Proceedings of the National Academy of Sciences 110.5 (2013): E435-E444.

a <- ggPlantmap.plot(ggPm.At.seed.devseries,Region,linewidth = 0.5) +
  scale_fill_brewer(palette="Set3") +
  ggtitle("Regions of Arabidopsis seed development") +
   theme(legend.key.height= unit(0.25, 'cm'),
        legend.key.width= unit(0.25, 'cm'))
b <- ggPlantmap.plot(ggPm.At.seed.devseries,Stage,linewidth = 0.5) +
  scale_fill_brewer(palette="Set1") +
  ggtitle("Stages of Arabidopsis seed development") +
   theme(legend.key.height= unit(0.25, 'cm'),
        legend.key.width= unit(0.25, 'cm'))
c <- ggPlantmap.plot(ggPm.At.seed.devseries,Part,linewidth = 0.5) +
  scale_fill_brewer(palette="Set1") +
  ggtitle("Parts of Arabidopsis seed development") +
   theme(legend.key.height= unit(0.25, 'cm'),
        legend.key.width= unit(0.25, 'cm'))
plot_grid(a,b,c,ncol=1,labels=c("a","b","c"),align = "v")

Each map will have their own classification. If you would like to adjust or create your own classification, you can save the ggPlantmap as a table and modify it on to mach the degree of separation you want to show.

How can I overlay quantitative data into my ggPlantmap?

With ggPlantmap you can overlay quantitative data into your ggPlantmap to visualize it as sort of a heatmap. To do so, you will need another table with contains quantitative data attributed to your ROIs.

WiYou can combine the ggPlantmap with a external quantitative data using the ggPlantmap.merge() function. later, the heatmap can be generated using the ggPlantmap.heatmap() function.This approach can be very helpful for R Shiny app developers to create web interactive tools to visualize gene expression gene profiles.

##Quantitative sample data, the expression of SCR in distinct cell-types of the Tomato root.
## Adapted data from: Kajala, Kaisa, et al. "Innovation, conservation, and repurposing of gene function in root cell type development." Cell 184.12 (2021): 3333-3348.
head(ggPm.tomatoatlas.expression.sample)
#> # A tibble: 6 × 2
#>   Cell.layer SCR.expression
#>   <chr>               <dbl>
#> 1 Epidermis            1.24
#> 2 Cortex               1.17
#> 3 Endodermis          75.8 
#> 4 Phloem               0.44
#> 5 Procambium           0.95
#> 6 Pericycle            0.95
##important: Names in the quantitative data needs to match the ones found in the map.

##Merging both datasets
expression.sample2 <- ggPlantmap.merge(ggPm.Sl.root.crosssection,ggPm.tomatoatlas.expression.sample,id.x = "ROI.name",id.y="Cell.layer") ##Column names between tables are different, need to specify both identifiers in x and y.
head(expression.sample2)
#> # A tibble: 6 × 6
#>   ROI.name  ROI.id point     x     y SCR.expression
#>   <chr>      <int> <int> <dbl> <dbl>          <dbl>
#> 1 Exodermis      1     1  615. -370.             NA
#> 2 Exodermis      1     2  601. -349.             NA
#> 3 Exodermis      1     3  598. -327.             NA
#> 4 Exodermis      1     4  617. -312.             NA
#> 5 Exodermis      1     5  636. -307.             NA
#> 6 Exodermis      1     6  651. -310.             NA

##Ploting
ggPlantmap.heatmap(expression.sample2,SCR.expression) +
  scale_fill_gradient(low="white",high="Red",na.value ="white")

How can I create my own ggPlantmap?

The principle of creating a ggPlantmap is fairly simple. We generate a list of ROIs (region of interests) in the Icy open-source software (https://icy.bioimageanalysis.org/) from any image. These ROIs are saved as XML files and later be converted into ggPlantmaps by using the function XML.to.ggPlantmap() function. We created step-by-step guide with tips. on how to generate xml images from plant images.

##converting the sample file: ggPm.sample.xml into a ggPlantmap table
ggPm <- XML.to.ggPlantmap("data/ggPm.sample.xml")
head(ggPm)
#> # A tibble: 6 × 5
#>   ROI.name ROI.id point     x     y
#>   <chr>     <int> <int> <dbl> <dbl>
#> 1 C1            1     1  270. -308.
#> 2 C1            1     2  234. -287.
#> 3 C1            1     3  241. -257.
#> 4 C1            1     4  271. -238.
#> 5 C1            1     5  285. -243.
#> 6 C1            1     6  307. -270.
##plotting the ggPm
ggPlantmap.plot(ggPm)

Is ggPlantmap only usefull for molecular expression data?

Not at all. ggPlantmap can also be used to produce many other type of plots. Essentially anything that you can trace, you can create! Be creative! We hope to build a community where people explore the usage of ggPlantmap for the communication of Plant science.

Can my ggPlantmap be included in the package?

YES!!! Any Plant map can be included in the package. If you create one, please email me ([email protected]) your ggPlantmap as tab-delimited table and I’ll make sure to include in the package. You will be credited and your information will be displayed in the summary file. I really hope this becomes an organic package with the contribution of the plant research community.

Acknowledgements

I would like to acknowledge Kaisa Kajala, Lisa Oskam, Monica Garcia Gomez, Pierre Gautrat for testing ggPlantmap before launch. I also would like to acknowledge Andres Romanowski for providing some data for the initial tests of ggPlantmap.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%