-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathppo.py
201 lines (162 loc) · 7.62 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import tensorflow as tf
import numpy as np
from types import SimpleNamespace
import gym
import copy
class PPO(tf.keras.Model):
def __init__(self, action_size):
super(PPO, self).__init__()
self.layer1 = tf.keras.layers.Conv2D(32, (8, 8), strides=(4, 4), activation='relu')
self.layer2 = tf.keras.layers.Conv2D(64, (4, 4), strides=(2, 2), activation='relu')
self.layer3 = tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), activation='relu')
self.layer4 = tf.keras.layers.Flatten()
self.layer5 = tf.keras.layers.Dense(256, activation='relu')
self.policy = tf.keras.layers.Dense(action_size, activation='softmax')
self.value = tf.keras.layers.Dense(1)
def call(self, state):
x = state / 255
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
policy = self.policy(x)
value = self.value(x)
return policy, value
class Memory(object):
def __init__(self, rollout):
self.rollout = rollout
self.states = []
self.actions = []
self.rewards = []
self.next_states = []
self.dones = []
self.policies = []
self.values = []
self.size = 0
def add(self, state, action, reward, next_state, done, policy, value):
self.size += 1
self.states.append(state)
self.actions.append(action)
self.rewards.append(reward)
self.next_states.append(next_state)
self.dones.append(done)
self.policies.append(policy)
self.values.append(value)
def reset(self, action, reward, next_state, done, value, policy):
self.states, self.next_states = [self.states[-1]], [next_state]
self.rewards, self.dones, self.actions = [reward], [done], [action]
self.values, self.policies = [value], [policy]
self.size = 1
class Player(object):
def __init__(self, config: SimpleNamespace):
self.env = gym.make(config.env_name, render_mode='human')
# self.env = gym.make(config.env_name)
self.lr = config.lr
self.gamma = config.gamma
self.batch_size = config.batch_size
self.rollout = config.rollout
self.epoch = config.epoch
self.lamda = config.lamda
self.normalize = config.normalize
self.ppo_eps = config.ppo_eps
self.state_size = self.env.observation_space.shape[0]
self.action_size = self.env.action_space.n
self.model = PPO(self.action_size)
self.memory = Memory(self.rollout)
self.opt = tf.keras.optimizers.Adam(learning_rate=self.lr, )
self.summary_writer = tf.summary.create_file_writer("logdir/ppo")
def _get_action_policy_value(self, obs):
policy, value = self.model(np.array([obs], dtype=np.float32))
policy = np.array(policy)[0]
action = np.random.choice(self.action_size, p=policy)
return action, policy, value[0]
def _collect_transitions(self, state, action, reward, next_state, done, policy, value):
self.memory.add(state, action, reward, next_state, done, policy, value)
def _get_gae(self):
values = np.array(tf.squeeze(self.memory.values)[:-1])
next_values = np.array(tf.squeeze(self.memory.values)[1:])
rewards = np.array(self.memory.rewards[:-1])
dones = np.array(self.memory.dones[:-1])
deltas = [r + self.gamma * (1 - d) * nv - v for r, d, nv, v in zip(rewards, dones, next_values, values)]
deltas = np.stack(deltas)
gaes = copy.deepcopy(deltas)
for t in reversed(range(len(deltas) - 1)):
gaes[t] = gaes[t] + (1 - dones[t]) * self.gamma * self.lamda * gaes[t + 1]
target = gaes + values
if self.normalize:
gaes = (gaes - gaes.mean()) / (gaes.std() + 1e-8)
return gaes, target
def update_param(self):
policies = np.array(tf.squeeze(self.memory.policies))
adv, target = self._get_gae()
for _ in range(self.epoch):
sample_range = np.arange(self.rollout)
np.random.shuffle(sample_range)
sample_idx = sample_range[:self.batch_size]
batch_state = [self.memory.states[i] for i in sample_idx]
# batch_done = [done[i] for i in sample_idx]
batch_action = [self.memory.actions[i] for i in sample_idx]
batch_target = [target[i] for i in sample_idx]
batch_adv = [adv[i] for i in sample_idx]
batch_old_policy = [policies[i] for i in sample_idx]
with tf.GradientTape() as tape:
train_policy, train_current_value = self.model(tf.convert_to_tensor(batch_state, dtype=tf.float32))
train_current_value = tf.squeeze(train_current_value)
train_adv = tf.convert_to_tensor(batch_adv, dtype=tf.float32)
train_target = tf.convert_to_tensor(batch_target, dtype=tf.float32)
train_action = tf.convert_to_tensor(batch_action, dtype=tf.int32)
train_old_policy = tf.convert_to_tensor(batch_old_policy, dtype=tf.float32)
entropy_loss = tf.reduce_mean(train_policy * tf.math.log(train_policy + 1e-8)) * 0.01
onehot_action = tf.one_hot(train_action, self.action_size)
selected_prob = tf.reduce_sum(train_policy * onehot_action, axis=1)
selected_old_prob = tf.reduce_sum(train_old_policy * onehot_action, axis=1)
logpi = tf.math.log(selected_prob + 1e-8)
logoldpi = tf.math.log(selected_old_prob + 1e-8)
ratio = tf.exp(logpi - logoldpi)
clipped_ratio = tf.clip_by_value(ratio, clip_value_min=1 - self.ppo_eps,
clip_value_max=1 + self.ppo_eps)
minimum = tf.minimum(tf.multiply(train_adv, clipped_ratio), tf.multiply(train_adv, ratio))
pi_loss = -tf.reduce_mean(minimum)
value_loss = tf.reduce_mean(tf.square(train_target - train_current_value))
total_loss = pi_loss + value_loss + entropy_loss
grads = tape.gradient(total_loss, self.model.trainable_variables)
self.opt.apply_gradients(zip(grads, self.model.trainable_variables))
def learn(self):
episode = 0
step = 0
score = 0
state = self.env.reset()
while True:
while self.memory.size <= self.rollout:
action, policy, value = self._get_action_policy_value(state)
next_state, reward, done, _ = self.env.step(action)
step += 1
score += reward
self._collect_transitions(state, action, reward, next_state, done, policy, value)
state = next_state
if done:
episode += 1
print(f"{episode} episode, score: {score}")
with self.summary_writer.as_default():
tf.summary.scalar('score', score, step=episode)
state = self.env.reset()
score = 0
self.update_param()
self.memory.reset(action, reward, next_state, done, value, policy)
if __name__ == '__main__':
if __name__ == '__main__':
config = {
"env_name": "Breakout-v0", # CartPole-v1 SpaceInvaders-v0
"lr": 0.001,
"gamma": 0.99,
"batch_size": 128,
"rollout": 256,
"epoch": 4,
"lamda": 0.95,
"normalize": True,
"ppo_eps": 0.2
}
config = SimpleNamespace(**config)
player = Player(config)
player.learn()