-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtarget_dqn.py
120 lines (96 loc) · 4.09 KB
/
target_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import tensorflow as tf
import numpy as np
from types import SimpleNamespace
from collections import deque
import random
import gym
class DQN(tf.keras.Model):
def __init__(self, action_size):
super(DQN, self).__init__()
self.layer1 = tf.keras.layers.Conv2D(32, (8, 8), strides=(4, 4), activation='relu')
self.layer2 = tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), activation='relu')
self.layer3 = tf.keras.layers.Flatten()
self.layer4 = tf.keras.layers.Dense(256, activation='relu')
self.value = tf.keras.layers.Dense(action_size)
def call(self, state):
x = state / 255
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
value = self.value(x)
return value
class Player(object):
def __init__(self, config: SimpleNamespace):
self.env = gym.make(config.env_name)
self.lr = config.lr
self.gamma = config.gamma
self.batch_size = config.batch_size
self.state_size = self.env.observation_space.shape[0]
self.action_size = self.env.action_space.n
self.memory = deque(maxlen=config.memory_size)
self.model = DQN(self.action_size)
self.target_model = DQN(self.action_size)
self.opt = tf.keras.optimizers.Adam(learning_rate=self.lr,)
self.summary_writer = tf.summary.create_file_writer("logdir")
def _collect_transitions(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, (1-done)*self.gamma))
def _get_action(self, obs):
q_value = self.model(np.array([obs], dtype=np.float32))[0]
if np.random.rand() <= self.epsilon:
action = np.random.choice(self.action_size)
else:
action = np.argmax(q_value)
return action
def _update_param(self, step):
batch = random.sample(self.memory, self.batch_size)
states, actions, rewards, next_states, gammas = zip(*[(e[0], e[1], e[2], e[3], e[4]) for e in batch])
with tf.GradientTape() as tape:
rewards = np.array(rewards, dtype=np.float32)
actions = np.array(actions, dtype=np.int32)
gammas = np.array(gammas, dtype=np.float32)
q_next = self.target_model(tf.convert_to_tensor(np.array(next_states), dtype=tf.float32))
td_target = gammas * tf.reduce_max(q_next, axis=1) + rewards
q = self.model(tf.convert_to_tensor(np.array(states), dtype=tf.float32))
q_value = tf.reduce_sum(tf.one_hot(actions, self.action_size) * q, axis=1)
td_error = q_value - td_target
loss = tf.reduce_mean(tf.square(td_error)*0.5)
gradients = tape.gradient(loss, self.model.trainable_variables)
self.opt.apply_gradients(zip(gradients, self.model.trainable_variables))
if step % 20 == 0:
self.target_model.set_weights(self.model.get_weights())
with self.summary_writer.as_default():
tf.summary.scalar('loss', loss, step=step)
@property
def epsilon(self):
return 1 / (self.episodes * 0.1 + 1)
def learn(self):
self.episodes = 0
step = 0
while True:
obs = self.env.reset()
done = False
score = 0
self.episodes += 1
while not done:
self.env.render()
action = self._get_action(obs)
next_state, reward, done, _ = self.env.step(action)
self._collect_transitions(obs, action, reward, next_state, done)
score += reward
obs = next_state
step += 1
if len(self.memory) > self.batch_size:
self._update_param(step=step)
print(f"{self.episodes} episode, score: {score}")
if __name__ == '__main__':
config = {
"env_name": "Breakout-v0", # CartPole-v1 SpaceInvaders-v0
"lr": 0.001,
"gamma": 0.99,
"batch_size": 64,
"memory_size": 2000,
}
config = SimpleNamespace(**config)
player = Player(config)
player.learn()