forked from Paperspace/horovod
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_keras.py
254 lines (200 loc) · 9.3 KB
/
test_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright 2018 Uber Technologies, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for horovod.keras."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import keras
from keras import backend as K
import numpy as np
import os
import tempfile
import tensorflow as tf
import warnings
import horovod.keras as hvd
class KerasTests(tf.test.TestCase):
"""
Tests for ops in horovod.keras.
"""
def __init__(self, *args, **kwargs):
super(KerasTests, self).__init__(*args, **kwargs)
warnings.simplefilter('module')
hvd.init()
self.config = tf.ConfigProto()
self.config.gpu_options.allow_growth = True
self.config.gpu_options.visible_device_list = str(hvd.local_rank())
def test_sparse_as_dense(self):
with self.test_session(config=self.config) as sess:
K.set_session(sess)
opt = keras.optimizers.RMSprop(lr=0.0001)
opt = hvd.DistributedOptimizer(opt, sparse_as_dense=True)
model = keras.models.Sequential()
model.add(keras.layers.Embedding(1000, 64, input_length=10))
model.compile(loss=keras.losses.MSE,
optimizer=opt)
x = np.random.randint(1000, size=(32, 10))
y = np.random.random((32, 10, 64))
# No assertions, we just need to verify that it doesn't hang
model.train_on_batch(x, y)
def test_load_model(self):
with self.test_session(config=self.config) as sess:
K.set_session(sess)
opt = keras.optimizers.RMSprop(lr=0.0001)
opt = hvd.DistributedOptimizer(opt)
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.RepeatVector(3))
model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
model.compile(loss=keras.losses.MSE,
optimizer=opt,
metrics=[keras.metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
new_model = hvd.load_model(fname)
new_opt = new_model.optimizer
os.remove(fname)
self.assertEqual(type(new_opt).__module__, 'horovod._keras')
self.assertEqual(type(new_opt).__name__, 'RMSprop')
self.assertEqual(K.get_value(opt.lr), K.get_value(new_opt.lr))
self._check_optimizer_weights(opt, new_opt)
def test_load_model_custom_optimizers(self):
class TestOptimizer(keras.optimizers.RMSprop):
def __init__(self, **kwargs):
super(TestOptimizer, self).__init__(**kwargs)
with self.test_session(config=self.config) as sess:
K.set_session(sess)
opt = TestOptimizer(lr=0.0001)
opt = hvd.DistributedOptimizer(opt)
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.RepeatVector(3))
model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
model.compile(loss=keras.losses.MSE,
optimizer=opt,
metrics=[keras.metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
custom_optimizers = [TestOptimizer]
new_model = hvd.load_model(fname, custom_optimizers=custom_optimizers)
new_opt = new_model.optimizer
os.remove(fname)
self.assertEqual(type(new_opt).__module__, 'horovod._keras')
self.assertEqual(type(new_opt).__name__, 'TestOptimizer')
self._check_optimizer_weights(opt, new_opt)
def test_load_model_custom_objects(self):
class TestOptimizer(keras.optimizers.RMSprop):
def __init__(self, **kwargs):
super(TestOptimizer, self).__init__(**kwargs)
with self.test_session(config=self.config) as sess:
K.set_session(sess)
opt = TestOptimizer(lr=0.0001)
opt = hvd.DistributedOptimizer(opt)
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.RepeatVector(3))
model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
model.compile(loss=keras.losses.MSE,
optimizer=opt,
metrics=[keras.metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
custom_objects = {
'TestOptimizer': lambda **kwargs: hvd.DistributedOptimizer(
TestOptimizer(**kwargs))
}
new_model = hvd.load_model(fname, custom_objects=custom_objects)
new_opt = new_model.optimizer
os.remove(fname)
self.assertEqual(type(new_opt).__module__, 'horovod._keras')
self.assertEqual(type(new_opt).__name__, 'TestOptimizer')
self.assertEqual(K.get_value(opt.lr), K.get_value(new_opt.lr))
self._check_optimizer_weights(opt, new_opt)
def test_load_model_broadcast(self):
def create_model():
opt = keras.optimizers.SGD(lr=0.01 * hvd.size(), momentum=0.9)
opt = hvd.DistributedOptimizer(opt)
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.RepeatVector(3))
model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
model.compile(loss=keras.losses.MSE,
optimizer=opt,
metrics=[keras.metrics.categorical_accuracy],
sample_weight_mode='temporal')
return model
with self.test_session(config=self.config) as sess:
K.set_session(sess)
model = create_model()
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
if hvd.rank() == 0:
_, fname = tempfile.mkstemp('.h5')
model.save(fname)
K.clear_session()
with self.test_session(config=self.config) as sess:
K.set_session(sess)
if hvd.rank() == 0:
model = hvd.load_model(fname)
os.remove(fname)
else:
model = create_model()
def generator():
while 1:
yield (x, y)
if hvd.rank() == 0:
self.assertEqual(len(model.optimizer.weights), 5)
else:
self.assertEqual(len(model.optimizer.weights), 0)
# No assertions, we just need to verify that it doesn't hang
callbacks = [hvd.callbacks.BroadcastGlobalVariablesCallback(0)]
model.fit_generator(generator(),
steps_per_epoch=10,
callbacks=callbacks,
epochs=0,
verbose=0,
workers=4,
initial_epoch=1)
self.assertEqual(len(model.optimizer.weights), 5)
def _check_optimizer_weights(self, opt, new_opt):
self.assertEqual(len(opt.get_weights()), len(new_opt.get_weights()))
for weights, new_weights in zip(opt.get_weights(),
new_opt.get_weights()):
if np.isscalar(weights):
self.assertEqual(weights, new_weights)
else:
self.assertListEqual(weights.tolist(), new_weights.tolist())
def test_from_config(self):
with self.test_session(config=self.config) as sess:
K.set_session(sess)
opt = keras.optimizers.Adam()
hopt = hvd.DistributedOptimizer(opt)
cfg = hopt.get_config()
hopt_copy1 = hopt.from_config(cfg)
self.assertEqual(cfg, hopt_copy1.get_config())
hopt_copy2 = hopt.__class__.from_config(cfg)
self.assertEqual(cfg, hopt_copy2.get_config())