Max Schwarzer*, Ankesh Anand*, Rishab Goel, R Devon Hjelm, Aaron Courville, Philip Bachman
This repo provides code for implementing the SPR paper
- 📦 Install -- Install relevant dependencies and the project
- 🔧 Usage -- Commands to run different experiments from the paper
To install the requirements, follow these steps:
# PyTorch
conda install pytorch torchvision -c pytorch
export LC_ALL=C.UTF-8
export LANG=C.UTF-8
# Install requirements
pip install -r requirements.txt
# Finally, install the project
pip install --user -e git+git://github.com/ankeshanand/abstract-world-models
The default branch for the latest and stable changes is release
.
- To run MPR with augmentation
python -m scripts.run --game pong --momentum-tau 1.
- To run MPR without augmentation
python -m scripts.run --game pong --augmentation none --target-augmentation 0 --dropout 0.5
When reporting scores, we average across 10 seeds.
.
├── scripts
│ └── run.py # The main runner script to launch jobs.
├── src
│ ├── agent.py # Implements the Agent API for action selection
│ ├── algos.py # Distributional RL loss
│ ├── models.py # Network architecture and forward passes.
│ ├── rlpyt_atari_env.py # Slightly modified Atari env from rlpyt
│ ├── rlpyt_utils.py # Utility methods that we use to extend rlpyt's functionality
│ └── utils.py # Command line arguments and helper functions
│
└── requirements.txt # Dependencies