-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTextRCNN.py
73 lines (66 loc) · 4.09 KB
/
TextRCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#coding: UTF-8
import mindspore
import mindspore.ops as ops
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import initializer, Normal
class Config(object):
"""配置参数"""
def __init__(self, dataset, embedding):
self.model_name = 'TextRCNN'
self.train_path = dataset + '/data/train.txt' # 训练集
self.dev_path = dataset + '/data/dev.txt' # 验证集
self.test_path = dataset + '/data/test.txt' # 测试集
self.class_list = [x.strip() for x in open(
dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单
self.vocab_path = dataset + '/data/vocab.pkl' # 词表
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果
self.log_path = dataset + '/log/' + self.model_name
self.embedding_pretrained = mindspore.Tensor(
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
if embedding != 'random' else None # 预训练词向量
self.dropout = 1.0 # 随机失活
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
self.num_classes = len(self.class_list) # 类别数
self.n_vocab = 0 # 词表大小,在运行时赋值
self.num_epochs = 10 # epoch数
self.batch_size = 128 # mini-batch大小
self.pad_size = 32 # 每句话处理成的长度(短填长切)
self.learning_rate = 1e-3 # 学习率
self.embed = 300 # 字向量维度, 若使用了预训练词向量,则维度统一
self.hidden_size = 256 # lstm隐藏层
self.num_layers = 1 # lstm层数
'''Recurrent Convolutional Neural Networks for Text Classification'''
class Embedding(nn.Embedding):
def __init__(self, vocab_size, embedding_size, use_one_hot=False, embedding_table='normal', dtype=mindspore.float32, padding_idx=None):
if embedding_table == 'normal':
embedding_table = Normal(1.0)
super().__init__(vocab_size, embedding_size, use_one_hot, embedding_table, dtype, padding_idx)
@classmethod
def from_pretrained_embedding(cls, embeddings:Tensor, freeze=True, padding_idx=None):
rows, cols = embeddings.shape
embedding = cls(rows, cols, embedding_table=embeddings, padding_idx=padding_idx)
embedding.embedding_table.requires_grad = not freeze
return embedding
class Model(nn.Cell):
def __init__(self, config):
super(Model, self).__init__()
if config.embedding_pretrained is not None:
self.embedding = Embedding.from_pretrained_embedding(config.embedding_pretrained, freeze=False)
else:
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers,
bidirectional=True, batch_first=True, dropout=config.dropout)
self.maxpool = nn.MaxPool1d(config.pad_size)
self.fc = nn.Dense(config.hidden_size * 2 + config.embed, config.num_classes)
def forward(self, x):
x, _ = x
embed = self.embedding(x) # [batch_size, seq_len, embeding]=[64, 32, 64]
out, _ = self.lstm(embed)
out = ops.cat((embed, out), 2)
out = ops.relu(out)
out = out.permute(0, 2, 1)
out = self.maxpool(out).squeeze()
out = self.fc(out)
return out