-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpostprocess.py
78 lines (68 loc) · 2.95 KB
/
postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation api."""
import os
import pickle
import numpy as np
from src.model_utils.config import config
from src.utils import Dictionary
from src.utils import get_score
def read_from_file():
'''
calculate accuraty.
'''
predictions = []
probs = []
source_sentences = []
target_sentences = []
file_num = len(os.listdir(config.source_id_folder))
for i in range(file_num):
f_name = "gigaword_bs_" + str(config.batch_size) + "_" + str(i)
source_ids = np.fromfile(os.path.join(config.source_id_folder, f_name + ".bin"), np.int32)
source_ids = source_ids.reshape(1, config.max_decode_length)
target_ids = np.fromfile(os.path.join(config.target_id_folder, f_name + ".bin"), np.int32)
target_ids = target_ids.reshape(1, config.max_decode_length)
predicted_ids = np.fromfile(os.path.join(config.result_dir, f_name + "_0.bin"), np.int32)
predicted_ids = predicted_ids.reshape(1, config.max_decode_length + 1)
entire_probs = np.fromfile(os.path.join(config.result_dir, f_name + "_1.bin"), np.float32)
entire_probs = entire_probs.reshape(1, config.beam_width, config.max_decode_length + 1)
source_sentences.append(source_ids)
target_sentences.append(target_ids)
predictions.append(predicted_ids)
probs.append(entire_probs)
output = []
for inputs, ref, batch_out, batch_probs in zip(source_sentences,
target_sentences,
predictions,
probs):
for i in range(config.batch_size):
if batch_out.ndim == 3:
batch_out = batch_out[:, 0]
example = {
"source": inputs[i].tolist(),
"target": ref[i].tolist(),
"prediction": batch_out[i].tolist(),
"prediction_prob": batch_probs[i].tolist()
}
output.append(example)
return output
if __name__ == '__main__':
result = read_from_file()
vocab = Dictionary.load_from_persisted_dict(config.vocab)
with open(config.output, "wb") as f:
pickle.dump(result, f, 1)
# get score by given metric
score = get_score(result, vocab, metric=config.metric)
print(score)