-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflicm.cpp
228 lines (213 loc) · 6.43 KB
/
flicm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#include <iostream>
#include <vector>
#include <ctime>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
//计算聚类中心,cNum为聚类中心的数目,m为控制收敛速度的参数,通常为2
void calcCenters(Mat& image, vector<Mat>& U, int cNum, double m, double* center)
{
double sSum;
double sum;
for (int k = 0; k < cNum; k++)
{
sSum = 0;
sum = 0;
for (int i = 0; i < image.rows; i++)
for (int j = 0; j < image.cols; j++)
{
sSum += pow(U[k].at<double>(i,j), m);
sum += pow(U[k].at<double>(i,j), m) * (double)(image.at<uchar>(i,j));
}
center[k] = sum / sSum; //得到聚类中心
}
}
void FLICM(Mat& image, vector<Mat>& U, double m, int cNum, int winSize, int maxIter, double thrE, int& iter)
{
int sStep = (winSize - 1) / 2;
double* center = new double[cNum];
calcCenters(image, U, cNum, m, center);
double dMax = 10.0; // 先初始化一个较大的值,|U_new-U_old|
// vector默认复制构造函数为浅拷贝,需自己复制
Mat tmp(image.size(), CV_64FC1); // 复制时,使用的临时变量
vector<Mat> Uold;
for (int k = 0; k < cNum; k++)
{
for (int i = 0; i < image.rows; i++)
for (int j = 0; j < image.cols; j++)
tmp.at<double>(i,j) = U[k].at<double>(i,j);
Uold.push_back(tmp);
}
vector<double> d1(cNum, 0); // d1为公式(17)中的G_ki
vector<double> d2(cNum, 0); // d2为公式(19)中的分母的前半部分
double sSum = 0;
double dd;
int x, y; // 坐标点x, y
double dist = 0.0; // 距离
double val = 0; // 像素的灰度值
double* cenOld = new double[cNum];
while (dMax > thrE && iter < maxIter) // 步骤6
{
for (int i = 0; i < image.rows; i++)
{
for (int j = 0; j < image.cols; j++)
{
for (int k = 0; k < cNum; k++)
{
sSum = 4.9407e-324; //重置sSum
for (int ii = -sStep; ii <= sStep; ii++) // sStep是窗口半径,ii和jj是对局部区域计算
for (int jj = -sStep; jj <= sStep; jj++)
{
x = i + ii; // 有待思考
y = j + jj;
dist = sqrt(pow((x - i), 2)+ pow((y - j), 2)); // 局部区域中, 点(x, y) 和 (i, j)的距离
// (x,y)不能超过边界,也不能与(i,j)重合
if ( x >= 0 && x < image.rows && y >= 0 && y < image.cols && (ii != 0 || jj != 0))
{
val = (double)image.at<uchar>(x, y); // i的邻域点j点的灰度值,公式(17)
sSum = sSum + 1.0 / (1.0 + dist) * (1 - pow(Uold[k].at<double>(i, j), m)) * pow(abs(val - center[k]), 2);
}
}
d1[k] = sSum;
d2[k] = pow(abs((double)image.at<uchar>(i,j) - center[k]), 2);
}
for (int k = 0; k < cNum; k++)
{
if (d1[k] == 0)
d1[k] = 4.9407e-324; // 接近于0的极小值
if (d2[k] == 0)
d2[k] = 4.9407e-324; // 接近于0的极小值
}
for (int k = 0; k < cNum; k++)
{
dd = d1[k] + d2[k]; // 每个k都用到啦
sSum = 4.9407e-324;
for (int ii = 0; ii < cNum; ii++)
sSum = sSum + pow((dd / (d1[ii] + d2[ii])), (1.0 / (m - 1.0)));
U[k].at<double>(i,j) = 1.0 / sSum;
}
} // end for j
} // end for i
for (int k = 0; k < cNum; k++)
cenOld[k] = center[k];
calcCenters(image, U, cNum, m, center); // 利用旧隶属度矩阵,计算初始聚类中心
for (int k = 0; k < cNum; k++)
{
if (dMax < abs(cenOld[k] - center[k]))
dMax = abs(cenOld[k] - center[k]);
Uold[k] = U[k];
}
cout << "第" << iter << "次迭代" << endl;
iter++; // 记录迭代次数
} // end for while
delete [] center;
delete [] cenOld;
}
void Flicm_Cluster(Mat& img, Mat& out_img, int cNum, double m, int winSize, int maxIter, double thrE, int& iter)
{
Mat gray;
img.copyTo(gray);
Mat image(img.size(), CV_64FC1);
if (gray.channels() > 1) // 转化为灰度图
{
cvtColor(gray, gray, CV_RGB2GRAY);
image = gray; // 转换为0-255的double型
}
else
image = img;
// 随机初始化隶属度矩阵U,大小为(H,W,cNum)
vector<Mat> U; // 隶属度矩阵U
// 一定要提前指定U中元素的类型和大小!
for (int k = 0; k < cNum; k++)
{
Mat u(img.size(), CV_64FC1);
U.push_back(u);
}
Mat col_sum(image.rows, image.cols, CV_64FC1);
// 一定要初始化!
for (int i = 0; i < image.rows; i++)
for (int j = 0; j < image.cols; j++)
col_sum.at<double>(i, j) = 0.0;
for (int i = 0; i < image.rows; i++)
{
for (int j = 0; j < image.cols; j++)
for (int k = 0; k < cNum; k++)
{
U[k].at<double>(i,j) = rand() / (double)(RAND_MAX+1.0); // 产生一个0~1之间的小数
col_sum.at<double>(i,j) += U[k].at<double>(i,j);
}
}
for (int k = 0; k < cNum; k++)
divide(U[k], col_sum, U[k]);
FLICM(image, U, m, cNum, winSize, maxIter, thrE, iter);
// 根据最大隶属度,判别每个像素点所属类别
Mat clus(image.size(), CV_8UC1);
int max_clus;
for (int i = 0; i < clus.rows; i++)
for (int j = 0; j < clus.cols; j++)
{
max_clus = 0;
for (int k = 1; k < cNum; k++)
{
if (U[k].at<double>(i,j) > U[k-1].at<double>(i,j))
max_clus = k;
}
clus.at<uchar>(i,j) = max_clus;
}
// 显示聚类的结果图片
for (int i = 0; i < out_img.rows; i++)
for (int j = 0; j < out_img.cols; j++)
{
/*for (int k = 0; k < cNum; k++)
if (clus.at<uchar>(i,j) == k)
{
out_img.at<cv::Vec3b>(i,j)[0] = 255*k;
out_img.at<cv::Vec3b>(i,j)[1] = 255*k;
out_img.at<cv::Vec3b>(i,j)[2] = 255*k;
}*/
if (clus.at<uchar>(i,j) == 0)
{
out_img.at<cv::Vec3b>(i,j)[0] = 0;
out_img.at<cv::Vec3b>(i,j)[1] = 255;
out_img.at<cv::Vec3b>(i,j)[2] = 0;
}
else if (clus.at<uchar>(i,j) == 1)
{
out_img.at<cv::Vec3b>(i,j)[0] = 0;
out_img.at<cv::Vec3b>(i,j)[1] = 0;
out_img.at<cv::Vec3b>(i,j)[2] = 255;
}
else
{
out_img.at<cv::Vec3b>(i,j)[0] = 255;
out_img.at<cv::Vec3b>(i,j)[1] = 255;
out_img.at<cv::Vec3b>(i,j)[2] = 255;
}
}
}
int main()
{
// 计算运行时间
clock_t start, end;
start = clock();
// 设置聚类算法的一些初始参数
int cNum = 3; // 聚类中心数量
double m = 2; // 模糊指数m
int winSize = 3; // 局部窗口直径
int maxIter = 100; // 最大迭代次数
double thrE = 0.00001; // 收敛阈值
Mat img = imread("brain.tif");
Mat out_img(img.size(), CV_8UC3);
int iter = 0;
Flicm_Cluster(img, out_img, cNum, m, winSize, maxIter, thrE, iter);
cout << "总共迭代了" << iter << "次" << endl;
imshow("dst", out_img);
//imwrite("1_8_1.jpg", out_img);
// 显示运行多少时间
end = clock();
double total_time = 0;
total_time = (end - start) / CLOCKS_PER_SEC;
cout << "迭代" << iter << "次需要花费" << total_time << "秒" << endl;
waitKey();
return 0;
}