forked from jwetzl/MAPSuperresolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.txt
77 lines (59 loc) · 2.88 KB
/
README.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
===========================================================
___ _ _ ___ _ __ __ _ ___
/ __| | | | \ /_\ | \/ | /_\ | _ \
| (__| |_| | |) / _ \ | |\/| |/ _ \| _/
\___|\___/|___/_/_\_\_|_|__|_/_/_\_\_|_ ___
/ __| | | | _ \ __| _ \___| _ \ __/ __|
\__ \ |_| | _/ _|| /___| / _|\__ \
|___/\___/|_| |___|_|_\ |_|_\___|___/
2012
by Jens Wetzl ([email protected])
and Oliver Taubmann ([email protected])
This work is licensed under a Creative Commons
Attribution 3.0 Unported License. (CC-BY)
http://creativecommons.org/licenses/by/3.0/
===========================================================
This is a cross-platform, CUDA-based C++ implementation of
the framework proposed in our paper "GPU Accelerated
Time-of-Flight Super-Resolution for Image-Guided Surgery".
It employs a maximum a posteriori (MAP) estimation to
super-resolve an arbitrary, preregistered grayscale image
sequence to obtain a single new image of improved quality
and resolution. In particular, it can be used to enhance
depth maps from range sensors such as Time-of-Flight
cameras.
If you use this framework in your research, please cite:
Wetzl, J., Taubmann, O., Haase, S., Köhler, T., Kraus, M.,
and Hornegger, J. (2013). GPU-Accelerated Time-of-Flight
Super-Resolution for Image-Guided Surgery. In Meinzer,
H.-P., Deserno, T. M., Handels, H., and Tolxdorff, T.,
editors, Bildverarbeitung für die Medizin 2013, Informatik
aktuell, pages 21–26. Springer Berlin Heidelberg.
===========================================================
DEPENDENCIES
===========================================================
To use this software, you need:
- CMake (http://www.cmake.org/) for generating build files
of your choice.
- The Nvidia GPU Computing Toolkit and SDK
(http://www.nvidia.com/object/cuda_home_new.html).
- CUDA L-BFGS (https://github.com/jwetzl/CudaLBFGS), our
own library for GPU-accelerated nonlinear optimization.
- FreeImage (http://freeimage.sourceforge.net/), a
lightweight image IO library. Note: This can easily be
replaced with your preferred tool by adapting
ImageIO.{h,cpp} accordingly.
===========================================================
BUILDING
===========================================================
The default settings should be fine for regular use, but
there are some options, you can
- enable error checking and timing
- choose not to store the transpose of the system matrix.
This will increase computation time but decrease the
memory footprint.
===========================================================
USAGE
===========================================================
The superres binary displays a usage message when you run
it without parameters.