forked from libfann/fann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfann_cascade.c
1048 lines (892 loc) · 33.3 KB
/
fann_cascade.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003-2012 Steffen Nissen ([email protected])
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "fann.h"
#include "string.h"
#ifndef FIXEDFANN
/* #define CASCADE_DEBUG */
/* #define CASCADE_DEBUG_FULL */
void fann_print_connections_raw(struct fann *ann)
{
unsigned int i;
for(i = 0; i < ann->total_connections_allocated; i++)
{
if(i == ann->total_connections)
{
printf("* ");
}
printf("%f ", ann->weights[i]);
}
printf("\n\n");
}
/* Cascade training directly on the training data.
The connected_neurons pointers are not valid during training,
but they will be again after training.
*/
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_data(struct fann *ann, struct fann_train_data *data,
unsigned int max_neurons,
unsigned int neurons_between_reports,
float desired_error)
{
float error;
unsigned int i;
unsigned int total_epochs = 0;
int desired_error_reached;
if(neurons_between_reports && ann->callback == NULL)
{
printf("Max neurons %3d. Desired error: %.6f\n", max_neurons, desired_error);
}
for(i = 1; i <= max_neurons; i++)
{
/* train output neurons */
total_epochs += fann_train_outputs(ann, data, desired_error);
error = fann_get_MSE(ann);
desired_error_reached = fann_desired_error_reached(ann, desired_error);
/* print current error */
if(neurons_between_reports &&
(i % neurons_between_reports == 0
|| i == max_neurons || i == 1 || desired_error_reached == 0))
{
if(ann->callback == NULL)
{
printf
("Neurons %3d. Current error: %.6f. Total error:%8.4f. Epochs %5d. Bit fail %3d",
i-1, error, ann->MSE_value, total_epochs, ann->num_bit_fail);
if((ann->last_layer-2) != ann->first_layer)
{
printf(". candidate steepness %.2f. function %s",
(ann->last_layer-2)->first_neuron->activation_steepness,
FANN_ACTIVATIONFUNC_NAMES[(ann->last_layer-2)->first_neuron->activation_function]);
}
printf("\n");
}
else if((*ann->callback) (ann, data, max_neurons,
neurons_between_reports, desired_error, total_epochs) == -1)
{
/* you can break the training by returning -1 */
break;
}
}
if(desired_error_reached == 0)
break;
if(fann_initialize_candidates(ann) == -1)
{
/* Unable to initialize room for candidates */
break;
}
/* train new candidates */
total_epochs += fann_train_candidates(ann, data);
/* this installs the best candidate */
fann_install_candidate(ann);
}
/* Train outputs one last time but without any desired error */
total_epochs += fann_train_outputs(ann, data, 0.0);
if(neurons_between_reports && ann->callback == NULL)
{
printf("Train outputs Current error: %.6f. Epochs %6d\n", fann_get_MSE(ann),
total_epochs);
}
/* Set pointers in connected_neurons
* This is ONLY done in the end of cascade training,
* since there is no need for them during training.
*/
fann_set_shortcut_connections(ann);
}
FANN_EXTERNAL void FANN_API fann_cascadetrain_on_file(struct fann *ann, const char *filename,
unsigned int max_neurons,
unsigned int neurons_between_reports,
float desired_error)
{
struct fann_train_data *data = fann_read_train_from_file(filename);
if(data == NULL)
{
return;
}
fann_cascadetrain_on_data(ann, data, max_neurons, neurons_between_reports, desired_error);
fann_destroy_train(data);
}
int fann_train_outputs(struct fann *ann, struct fann_train_data *data, float desired_error)
{
float error, initial_error, error_improvement;
float target_improvement = 0.0;
float backslide_improvement = -1.0e20f;
unsigned int i;
unsigned int max_epochs = ann->cascade_max_out_epochs;
unsigned int min_epochs = ann->cascade_min_out_epochs;
unsigned int stagnation = max_epochs;
/* TODO should perhaps not clear all arrays */
fann_clear_train_arrays(ann);
/* run an initial epoch to set the initital error */
initial_error = fann_train_outputs_epoch(ann, data);
if(fann_desired_error_reached(ann, desired_error) == 0)
return 1;
for(i = 1; i < max_epochs; i++)
{
error = fann_train_outputs_epoch(ann, data);
/*printf("Epoch %6d. Current error: %.6f. Bit fail %d.\n", i, error, ann->num_bit_fail); */
if(fann_desired_error_reached(ann, desired_error) == 0)
{
#ifdef CASCADE_DEBUG
printf("Error %f < %f\n", error, desired_error);
#endif
return i + 1;
}
/* Improvement since start of train */
error_improvement = initial_error - error;
/* After any significant change, set a new goal and
* allow a new quota of epochs to reach it */
if((target_improvement >= 0 &&
(error_improvement > target_improvement || error_improvement < backslide_improvement)) ||
(target_improvement < 0 &&
(error_improvement < target_improvement || error_improvement > backslide_improvement)))
{
/*printf("error_improvement=%f, target_improvement=%f, backslide_improvement=%f, stagnation=%d\n", error_improvement, target_improvement, backslide_improvement, stagnation); */
target_improvement = error_improvement * (1.0f + ann->cascade_output_change_fraction);
backslide_improvement = error_improvement * (1.0f - ann->cascade_output_change_fraction);
stagnation = i + ann->cascade_output_stagnation_epochs;
}
/* No improvement in allotted period, so quit */
if(i >= stagnation && i >= min_epochs)
{
return i + 1;
}
}
return max_epochs;
}
float fann_train_outputs_epoch(struct fann *ann, struct fann_train_data *data)
{
unsigned int i;
fann_reset_MSE(ann);
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
fann_compute_MSE(ann, data->output[i]);
fann_update_slopes_batch(ann, ann->last_layer - 1, ann->last_layer - 1);
}
switch (ann->training_algorithm)
{
case FANN_TRAIN_RPROP:
fann_update_weights_irpropm(ann, (ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
break;
case FANN_TRAIN_SARPROP:
fann_update_weights_sarprop(ann, ann->sarprop_epoch, (ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
++(ann->sarprop_epoch);
break;
case FANN_TRAIN_QUICKPROP:
fann_update_weights_quickprop(ann, data->num_data,
(ann->last_layer - 1)->first_neuron->first_con,
ann->total_connections);
break;
case FANN_TRAIN_BATCH:
case FANN_TRAIN_INCREMENTAL:
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
}
return fann_get_MSE(ann);
}
int fann_reallocate_connections(struct fann *ann, unsigned int total_connections)
{
/* The connections are allocated, but the pointers inside are
* first moved in the end of the cascade training session.
*/
#ifdef CASCADE_DEBUG
printf("realloc from %d to %d\n", ann->total_connections_allocated, total_connections);
#endif
ann->connections =
(struct fann_neuron **) realloc(ann->connections,
total_connections * sizeof(struct fann_neuron *));
if(ann->connections == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->weights = (fann_type *) realloc(ann->weights, total_connections * sizeof(fann_type));
if(ann->weights == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->train_slopes =
(fann_type *) realloc(ann->train_slopes, total_connections * sizeof(fann_type));
if(ann->train_slopes == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->prev_steps = (fann_type *) realloc(ann->prev_steps, total_connections * sizeof(fann_type));
if(ann->prev_steps == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->prev_train_slopes =
(fann_type *) realloc(ann->prev_train_slopes, total_connections * sizeof(fann_type));
if(ann->prev_train_slopes == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
ann->total_connections_allocated = total_connections;
return 0;
}
int fann_reallocate_neurons(struct fann *ann, unsigned int total_neurons)
{
struct fann_layer *layer_it;
struct fann_neuron *neurons;
unsigned int num_neurons = 0;
unsigned int num_neurons_so_far = 0;
neurons =
(struct fann_neuron *) realloc(ann->first_layer->first_neuron,
total_neurons * sizeof(struct fann_neuron));
ann->total_neurons_allocated = total_neurons;
if(neurons == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
/* Also allocate room for more train_errors */
ann->train_errors = (fann_type *) realloc(ann->train_errors, total_neurons * sizeof(fann_type));
if(ann->train_errors == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return -1;
}
if(neurons != ann->first_layer->first_neuron)
{
/* Then the memory has moved, also move the pointers */
#ifdef CASCADE_DEBUG_FULL
printf("Moving neuron pointers\n");
#endif
/* Move pointers from layers to neurons */
for(layer_it = ann->first_layer; layer_it != ann->last_layer; layer_it++)
{
num_neurons = layer_it->last_neuron - layer_it->first_neuron;
layer_it->first_neuron = neurons + num_neurons_so_far;
layer_it->last_neuron = layer_it->first_neuron + num_neurons;
num_neurons_so_far += num_neurons;
}
}
return 0;
}
void initialize_candidate_weights(struct fann *ann, unsigned int first_con, unsigned int last_con, float scale_factor)
{
fann_type prev_step;
unsigned int i = 0;
unsigned int bias_weight = first_con + (ann->first_layer->last_neuron - ann->first_layer->first_neuron) - 1;
if(ann->training_algorithm == FANN_TRAIN_RPROP)
prev_step = ann->rprop_delta_zero;
else
prev_step = 0;
for(i = first_con; i < last_con; i++)
{
if(i == bias_weight)
ann->weights[i] = fann_rand(-scale_factor, scale_factor);
else
ann->weights[i] = fann_rand(0,scale_factor);
ann->train_slopes[i] = 0;
ann->prev_steps[i] = prev_step;
ann->prev_train_slopes[i] = 0;
}
}
int fann_initialize_candidates(struct fann *ann)
{
/* The candidates are allocated after the normal neurons and connections,
* but there is an empty place between the real neurons and the candidate neurons,
* so that it will be possible to make room when the chosen candidate are copied in
* on the desired place.
*/
unsigned int neurons_to_allocate, connections_to_allocate;
unsigned int num_candidates = fann_get_cascade_num_candidates(ann);
unsigned int num_neurons = ann->total_neurons + num_candidates + 1;
unsigned int num_hidden_neurons = ann->total_neurons - ann->num_input - ann->num_output;
unsigned int candidate_connections_in = ann->total_neurons - ann->num_output;
unsigned int candidate_connections_out = ann->num_output;
/* the number of connections going into a and out of a candidate is
* ann->total_neurons */
unsigned int num_connections =
ann->total_connections + (ann->total_neurons * (num_candidates + 1));
unsigned int first_candidate_connection = ann->total_connections + ann->total_neurons;
unsigned int first_candidate_neuron = ann->total_neurons + 1;
unsigned int connection_it, i, j, k, candidate_index;
struct fann_neuron *neurons;
float scale_factor;
/* First make sure that there is enough room, and if not then allocate a
* bit more so that we do not need to allocate more room each time.
*/
if(num_neurons > ann->total_neurons_allocated)
{
/* Then we need to allocate more neurons
* Allocate half as many neurons as already exist (at least ten)
*/
neurons_to_allocate = num_neurons + num_neurons / 2;
if(neurons_to_allocate < num_neurons + 10)
{
neurons_to_allocate = num_neurons + 10;
}
if(fann_reallocate_neurons(ann, neurons_to_allocate) == -1)
{
return -1;
}
}
if(num_connections > ann->total_connections_allocated)
{
/* Then we need to allocate more connections
* Allocate half as many connections as already exist
* (at least enough for ten neurons)
*/
connections_to_allocate = num_connections + num_connections / 2;
if(connections_to_allocate < num_connections + ann->total_neurons * 10)
{
connections_to_allocate = num_connections + ann->total_neurons * 10;
}
if(fann_reallocate_connections(ann, connections_to_allocate) == -1)
{
return -1;
}
}
/* Some code to do semi Widrow + Nguyen initialization */
scale_factor = (float) (2.0 * pow(0.7f * (float)num_hidden_neurons, 1.0f / (float) ann->num_input));
if(scale_factor > 8)
scale_factor = 8;
else if(scale_factor < 0.5)
scale_factor = 0.5;
/* Set the neurons.
*/
connection_it = first_candidate_connection;
neurons = ann->first_layer->first_neuron;
candidate_index = first_candidate_neuron;
for(i = 0; i < ann->cascade_activation_functions_count; i++)
{
for(j = 0; j < ann->cascade_activation_steepnesses_count; j++)
{
for(k = 0; k < ann->cascade_num_candidate_groups; k++)
{
/* TODO candidates should actually be created both in
* the last layer before the output layer, and in a new layer.
*/
neurons[candidate_index].value = 0;
neurons[candidate_index].sum = 0;
neurons[candidate_index].activation_function =
ann->cascade_activation_functions[i];
neurons[candidate_index].activation_steepness =
ann->cascade_activation_steepnesses[j];
neurons[candidate_index].first_con = connection_it;
connection_it += candidate_connections_in;
neurons[candidate_index].last_con = connection_it;
/* We have no specific pointers to the output weights, but they are
* available after last_con */
connection_it += candidate_connections_out;
ann->train_errors[candidate_index] = 0;
initialize_candidate_weights(ann, neurons[candidate_index].first_con, neurons[candidate_index].last_con+candidate_connections_out, scale_factor);
candidate_index++;
}
}
}
/* Now randomize the weights and zero out the arrays that needs zeroing out.
*/
/*
#ifdef CASCADE_DEBUG_FULL
printf("random cand weight [%d ... %d]\n", first_candidate_connection, num_connections - 1);
#endif
for(i = first_candidate_connection; i < num_connections; i++)
{
//ann->weights[i] = fann_random_weight();
ann->weights[i] = fann_rand(-2.0,2.0);
ann->train_slopes[i] = 0;
ann->prev_steps[i] = 0;
ann->prev_train_slopes[i] = initial_slope;
}
*/
return 0;
}
int fann_train_candidates(struct fann *ann, struct fann_train_data *data)
{
fann_type best_cand_score = 0.0;
fann_type target_cand_score = 0.0;
fann_type backslide_cand_score = -1.0e20f;
unsigned int i;
unsigned int max_epochs = ann->cascade_max_cand_epochs;
unsigned int min_epochs = ann->cascade_min_cand_epochs;
unsigned int stagnation = max_epochs;
if(ann->cascade_candidate_scores == NULL)
{
ann->cascade_candidate_scores =
(fann_type *) malloc(fann_get_cascade_num_candidates(ann) * sizeof(fann_type));
if(ann->cascade_candidate_scores == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return 0;
}
}
for(i = 0; i < max_epochs; i++)
{
best_cand_score = fann_train_candidates_epoch(ann, data);
if(best_cand_score / ann->MSE_value > ann->cascade_candidate_limit)
{
#ifdef CASCADE_DEBUG
printf("above candidate limit %f/%f > %f", best_cand_score, ann->MSE_value,
ann->cascade_candidate_limit);
#endif
return i + 1;
}
if((best_cand_score > target_cand_score) || (best_cand_score < backslide_cand_score))
{
#ifdef CASCADE_DEBUG_FULL
printf("Best candidate score %f, real score: %f\n", ann->MSE_value - best_cand_score,
best_cand_score);
/* printf("best_cand_score=%f, target_cand_score=%f, backslide_cand_score=%f, stagnation=%d\n", best_cand_score, target_cand_score, backslide_cand_score, stagnation); */
#endif
target_cand_score = best_cand_score * (1.0f + ann->cascade_candidate_change_fraction);
backslide_cand_score = best_cand_score * (1.0f - ann->cascade_candidate_change_fraction);
stagnation = i + ann->cascade_candidate_stagnation_epochs;
}
/* No improvement in allotted period, so quit */
if(i >= stagnation && i >= min_epochs)
{
#ifdef CASCADE_DEBUG
printf("Stagnation with %d epochs, best candidate score %f, real score: %f\n", i + 1,
ann->MSE_value - best_cand_score, best_cand_score);
#endif
return i + 1;
}
}
#ifdef CASCADE_DEBUG
printf("Max epochs %d reached, best candidate score %f, real score: %f\n", max_epochs,
ann->MSE_value - best_cand_score, best_cand_score);
#endif
return max_epochs;
}
void fann_update_candidate_slopes(struct fann *ann)
{
struct fann_neuron *neurons = ann->first_layer->first_neuron;
struct fann_neuron *first_cand = neurons + ann->total_neurons + 1;
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann);
struct fann_neuron *cand_it;
unsigned int i, j, num_connections;
unsigned int num_output = ann->num_output;
fann_type max_sum, cand_sum, activation, derived, error_value, diff, cand_score;
fann_type *weights, *cand_out_weights, *cand_slopes, *cand_out_slopes;
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
for(cand_it = first_cand; cand_it < last_cand; cand_it++)
{
cand_score = ann->cascade_candidate_scores[cand_it - first_cand];
error_value = 0.0;
/* code more or less stolen from fann_run to fast forward pass
*/
cand_sum = 0.0;
num_connections = cand_it->last_con - cand_it->first_con;
weights = ann->weights + cand_it->first_con;
/* unrolled loop start */
i = num_connections & 3; /* same as modulo 4 */
switch (i)
{
case 3:
cand_sum += weights[2] * neurons[2].value;
case 2:
cand_sum += weights[1] * neurons[1].value;
case 1:
cand_sum += weights[0] * neurons[0].value;
case 0:
break;
}
for(; i != num_connections; i += 4)
{
cand_sum +=
weights[i] * neurons[i].value +
weights[i + 1] * neurons[i + 1].value +
weights[i + 2] * neurons[i + 2].value + weights[i + 3] * neurons[i + 3].value;
}
/*
* for(i = 0; i < num_connections; i++){
* cand_sum += weights[i] * neurons[i].value;
* }
*/
/* unrolled loop end */
max_sum = 150/cand_it->activation_steepness;
if(cand_sum > max_sum)
cand_sum = max_sum;
else if(cand_sum < -max_sum)
cand_sum = -max_sum;
activation =
fann_activation(ann, cand_it->activation_function, cand_it->activation_steepness,
cand_sum);
/* printf("%f = sigmoid(%f);\n", activation, cand_sum); */
cand_it->sum = cand_sum;
cand_it->value = activation;
derived = fann_activation_derived(cand_it->activation_function,
cand_it->activation_steepness, activation, cand_sum);
/* The output weights is located right after the input weights in
* the weight array.
*/
cand_out_weights = weights + num_connections;
cand_out_slopes = ann->train_slopes + cand_it->first_con + num_connections;
for(j = 0; j < num_output; j++)
{
diff = (activation * cand_out_weights[j]) - output_train_errors[j];
#ifdef CASCADE_DEBUG_FULL
/* printf("diff = %f = (%f * %f) - %f;\n", diff, activation, cand_out_weights[j], output_train_errors[j]); */
#endif
cand_out_slopes[j] -= 2.0f * diff * activation;
#ifdef CASCADE_DEBUG_FULL
/* printf("cand_out_slopes[%d] <= %f += %f * %f;\n", j, cand_out_slopes[j], diff, activation); */
#endif
error_value += diff * cand_out_weights[j];
cand_score -= (diff * diff);
#ifdef CASCADE_DEBUG_FULL
/* printf("cand_score[%d][%d] = %f -= (%f * %f)\n", cand_it - first_cand, j, cand_score, diff, diff); */
printf("cand[%d]: error=%f, activation=%f, diff=%f, slope=%f\n", cand_it - first_cand,
output_train_errors[j], (activation * cand_out_weights[j]), diff,
-2.0 * diff * activation);
#endif
}
ann->cascade_candidate_scores[cand_it - first_cand] = cand_score;
error_value *= derived;
cand_slopes = ann->train_slopes + cand_it->first_con;
for(i = 0; i < num_connections; i++)
{
cand_slopes[i] -= error_value * neurons[i].value;
}
}
}
void fann_update_candidate_weights(struct fann *ann, unsigned int num_data)
{
struct fann_neuron *first_cand = (ann->last_layer - 1)->last_neuron + 1; /* there is an empty neuron between the actual neurons and the candidate neuron */
struct fann_neuron *last_cand = first_cand + fann_get_cascade_num_candidates(ann) - 1;
switch (ann->training_algorithm)
{
case FANN_TRAIN_RPROP:
fann_update_weights_irpropm(ann, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_SARPROP:
/* TODO: increase epoch? */
fann_update_weights_sarprop(ann, ann->sarprop_epoch, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_QUICKPROP:
fann_update_weights_quickprop(ann, num_data, first_cand->first_con,
last_cand->last_con + ann->num_output);
break;
case FANN_TRAIN_BATCH:
case FANN_TRAIN_INCREMENTAL:
fann_error((struct fann_error *) ann, FANN_E_CANT_USE_TRAIN_ALG);
break;
}
}
fann_type fann_train_candidates_epoch(struct fann *ann, struct fann_train_data *data)
{
unsigned int i, j;
unsigned int best_candidate;
fann_type best_score;
unsigned int num_cand = fann_get_cascade_num_candidates(ann);
fann_type *output_train_errors = ann->train_errors + (ann->total_neurons - ann->num_output);
struct fann_neuron *output_neurons = (ann->last_layer - 1)->first_neuron;
for(i = 0; i < num_cand; i++)
{
/* The ann->MSE_value is actually the sum squared error */
ann->cascade_candidate_scores[i] = ann->MSE_value;
}
/*printf("start score: %f\n", ann->MSE_value); */
for(i = 0; i < data->num_data; i++)
{
fann_run(ann, data->input[i]);
for(j = 0; j < ann->num_output; j++)
{
/* TODO only debug, but the error is in opposite direction, this might be usefull info */
/* if(output_train_errors[j] != (ann->output[j] - data->output[i][j])){
* printf("difference in calculated error at %f != %f; %f = %f - %f;\n", output_train_errors[j], (ann->output[j] - data->output[i][j]), output_train_errors[j], ann->output[j], data->output[i][j]);
* } */
/*
* output_train_errors[j] = (data->output[i][j] - ann->output[j])/2;
* output_train_errors[j] = ann->output[j] - data->output[i][j];
*/
output_train_errors[j] = (data->output[i][j] - ann->output[j]);
switch (output_neurons[j].activation_function)
{
case FANN_LINEAR_PIECE_SYMMETRIC:
case FANN_SIGMOID_SYMMETRIC:
case FANN_SIGMOID_SYMMETRIC_STEPWISE:
case FANN_THRESHOLD_SYMMETRIC:
case FANN_ELLIOT_SYMMETRIC:
case FANN_GAUSSIAN_SYMMETRIC:
case FANN_SIN_SYMMETRIC:
case FANN_COS_SYMMETRIC:
output_train_errors[j] /= 2.0;
break;
case FANN_LINEAR:
case FANN_THRESHOLD:
case FANN_SIGMOID:
case FANN_SIGMOID_STEPWISE:
case FANN_GAUSSIAN:
case FANN_GAUSSIAN_STEPWISE:
case FANN_ELLIOT:
case FANN_LINEAR_PIECE:
case FANN_SIN:
case FANN_COS:
break;
}
}
fann_update_candidate_slopes(ann);
}
fann_update_candidate_weights(ann, data->num_data);
/* find the best candidate score */
best_candidate = 0;
best_score = ann->cascade_candidate_scores[best_candidate];
for(i = 1; i < num_cand; i++)
{
/*struct fann_neuron *cand = ann->first_layer->first_neuron + ann->total_neurons + 1 + i;
* printf("candidate[%d] = activation: %s, steepness: %f, score: %f\n",
* i, FANN_ACTIVATIONFUNC_NAMES[cand->activation_function],
* cand->activation_steepness, ann->cascade_candidate_scores[i]); */
if(ann->cascade_candidate_scores[i] > best_score)
{
best_candidate = i;
best_score = ann->cascade_candidate_scores[best_candidate];
}
}
ann->cascade_best_candidate = ann->total_neurons + best_candidate + 1;
#ifdef CASCADE_DEBUG
printf("Best candidate[%d]: with score %f, real score: %f\n", best_candidate,
ann->MSE_value - best_score, best_score);
#endif
return best_score;
}
/* add a layer ad the position pointed to by *layer */
struct fann_layer *fann_add_layer(struct fann *ann, struct fann_layer *layer)
{
int layer_pos = layer - ann->first_layer;
int num_layers = ann->last_layer - ann->first_layer + 1;
int i;
/* allocate the layer */
struct fann_layer *layers =
(struct fann_layer *) realloc(ann->first_layer, num_layers * sizeof(struct fann_layer));
if(layers == NULL)
{
fann_error((struct fann_error *) ann, FANN_E_CANT_ALLOCATE_MEM);
return NULL;
}
/* copy layers so that the free space is at the right location */
for(i = num_layers - 1; i >= layer_pos; i--)
{
layers[i] = layers[i - 1];
}
/* the newly allocated layer is empty */
layers[layer_pos].first_neuron = layers[layer_pos + 1].first_neuron;
layers[layer_pos].last_neuron = layers[layer_pos + 1].first_neuron;
/* Set the ann pointers correctly */
ann->first_layer = layers;
ann->last_layer = layers + num_layers;
#ifdef CASCADE_DEBUG_FULL
printf("add layer at pos %d\n", layer_pos);
#endif
return layers + layer_pos;
}
void fann_set_shortcut_connections(struct fann *ann)
{
struct fann_layer *layer_it;
struct fann_neuron *neuron_it, **neuron_pointers, *neurons;
unsigned int num_connections = 0, i;
neuron_pointers = ann->connections;
neurons = ann->first_layer->first_neuron;
for(layer_it = ann->first_layer + 1; layer_it != ann->last_layer; layer_it++)
{
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
{
neuron_pointers += num_connections;
num_connections = neuron_it->last_con - neuron_it->first_con;
for(i = 0; i != num_connections; i++)
{
neuron_pointers[i] = neurons + i;
}
}
}
}
void fann_add_candidate_neuron(struct fann *ann, struct fann_layer *layer)
{
unsigned int num_connections_in = layer->first_neuron - ann->first_layer->first_neuron;
unsigned int num_connections_out =
(ann->last_layer - 1)->last_neuron - (layer + 1)->first_neuron;
unsigned int num_connections_move = num_connections_out + num_connections_in;
unsigned int candidate_con, candidate_output_weight;
int i;
struct fann_layer *layer_it;
struct fann_neuron *neuron_it, *neuron_place, *candidate;
/* We know that there is enough room for the new neuron
* (the candidates are in the same arrays), so move
* the last neurons to make room for this neuron.
*/
/* first move the pointers to neurons in the layer structs */
for(layer_it = ann->last_layer - 1; layer_it != layer; layer_it--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move neuron pointers in layer %d, first(%d -> %d), last(%d -> %d)\n",
layer_it - ann->first_layer,
layer_it->first_neuron - ann->first_layer->first_neuron,
layer_it->first_neuron - ann->first_layer->first_neuron + 1,
layer_it->last_neuron - ann->first_layer->first_neuron,
layer_it->last_neuron - ann->first_layer->first_neuron + 1);
#endif
layer_it->first_neuron++;
layer_it->last_neuron++;
}
/* also move the last neuron in the layer that needs the neuron added */
layer->last_neuron++;
/* this is the place that should hold the new neuron */
neuron_place = layer->last_neuron - 1;
#ifdef CASCADE_DEBUG_FULL
printf("num_connections_in=%d, num_connections_out=%d\n", num_connections_in,
num_connections_out);
#endif
candidate = ann->first_layer->first_neuron + ann->cascade_best_candidate;
/* the output weights for the candidates are located after the input weights */
candidate_output_weight = candidate->last_con;
/* move the actual output neurons and the indexes to the connection arrays */
for(neuron_it = (ann->last_layer - 1)->last_neuron - 1; neuron_it != neuron_place; neuron_it--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move neuron %d -> %d\n", neuron_it - ann->first_layer->first_neuron - 1,
neuron_it - ann->first_layer->first_neuron);
#endif
*neuron_it = *(neuron_it - 1);
/* move the weights */
#ifdef CASCADE_DEBUG_FULL
printf("move weight[%d ... %d] -> weight[%d ... %d]\n", neuron_it->first_con,
neuron_it->last_con - 1, neuron_it->first_con + num_connections_move - 1,
neuron_it->last_con + num_connections_move - 2);
#endif
for(i = neuron_it->last_con - 1; i >= (int)neuron_it->first_con; i--)
{
#ifdef CASCADE_DEBUG_FULL
printf("move weight[%d] = weight[%d]\n", i + num_connections_move - 1, i);
#endif
ann->weights[i + num_connections_move - 1] = ann->weights[i];
}
/* move the indexes to weights */
neuron_it->last_con += num_connections_move;
num_connections_move--;
neuron_it->first_con += num_connections_move;
/* set the new weight to the newly allocated neuron */
ann->weights[neuron_it->last_con - 1] =
(ann->weights[candidate_output_weight]) * ann->cascade_weight_multiplier;
candidate_output_weight++;
}
/* Now inititalize the actual neuron */
neuron_place->value = 0;
neuron_place->sum = 0;
neuron_place->activation_function = candidate->activation_function;
neuron_place->activation_steepness = candidate->activation_steepness;
neuron_place->last_con = (neuron_place + 1)->first_con;
neuron_place->first_con = neuron_place->last_con - num_connections_in;
#ifdef CASCADE_DEBUG_FULL
printf("neuron[%d] = weights[%d ... %d] activation: %s, steepness: %f\n",
neuron_place - ann->first_layer->first_neuron, neuron_place->first_con,
neuron_place->last_con - 1, FANN_ACTIVATIONFUNC_NAMES[neuron_place->activation_function],
neuron_place->activation_steepness);/* TODO remove */
#endif
candidate_con = candidate->first_con;
/* initialize the input weights at random */
#ifdef CASCADE_DEBUG_FULL
printf("move cand weights[%d ... %d] -> [%d ... %d]\n", candidate_con,
candidate_con + num_connections_in - 1, neuron_place->first_con,
neuron_place->last_con - 1);
#endif
for(i = 0; i < (int)num_connections_in; i++)
{
ann->weights[i + neuron_place->first_con] = ann->weights[i + candidate_con];
#ifdef CASCADE_DEBUG_FULL
printf("move weights[%d] -> weights[%d] (%f)\n", i + candidate_con,
i + neuron_place->first_con, ann->weights[i + neuron_place->first_con]);
#endif
}
/* Change some of main variables */
ann->total_neurons++;
ann->total_connections += num_connections_in + num_connections_out;
return;
}
void fann_install_candidate(struct fann *ann)
{
struct fann_layer *layer;
layer = fann_add_layer(ann, ann->last_layer - 1);
fann_add_candidate_neuron(ann, layer);
return;
}
#endif /* FIXEDFANN */
FANN_EXTERNAL unsigned int FANN_API fann_get_cascade_num_candidates(struct fann *ann)
{
return ann->cascade_activation_functions_count *
ann->cascade_activation_steepnesses_count *
ann->cascade_num_candidate_groups;
}
FANN_GET_SET(float, cascade_output_change_fraction)
FANN_GET_SET(unsigned int, cascade_output_stagnation_epochs)
FANN_GET_SET(float, cascade_candidate_change_fraction)
FANN_GET_SET(unsigned int, cascade_candidate_stagnation_epochs)
FANN_GET_SET(unsigned int, cascade_num_candidate_groups)
FANN_GET_SET(fann_type, cascade_weight_multiplier)
FANN_GET_SET(fann_type, cascade_candidate_limit)
FANN_GET_SET(unsigned int, cascade_max_out_epochs)
FANN_GET_SET(unsigned int, cascade_max_cand_epochs)
FANN_GET_SET(unsigned int, cascade_min_out_epochs)
FANN_GET_SET(unsigned int, cascade_min_cand_epochs)
FANN_GET(unsigned int, cascade_activation_functions_count)
FANN_GET(enum fann_activationfunc_enum *, cascade_activation_functions)
FANN_EXTERNAL void FANN_API fann_set_cascade_activation_functions(struct fann *ann,
enum fann_activationfunc_enum *
cascade_activation_functions,
unsigned int