-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcryptonight_aesni.c
234 lines (195 loc) · 8.26 KB
/
cryptonight_aesni.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (c) 2012-2013 The Cryptonote developers
// Copyright (c) 2018 Webchain project
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "cryptonight.h"
#include "oaes_lib.h"
#include "c_keccak.h"
#include "c_groestl.h"
#include "c_blake256.h"
#include "c_jh.h"
#include "c_skein.h"
#include "int-util.h"
#include <x86intrin.h>
#ifdef __amd64
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2) {
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3) {
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf) {
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *) keybuf;
tmp1 = _mm_load_si128((__m128i *) keybuf);
tmp3 = _mm_load_si128((__m128i * )(keybuf + 0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
struct cryptonight_ctx {
uint8_t long_state[MEMORY] __attribute((aligned(16)));
union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE] __attribute((aligned(16)));
uint64_t a[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint64_t b[AES_BLOCK_SIZE >> 3] __attribute__((aligned(16)));
uint8_t c[AES_BLOCK_SIZE] __attribute__((aligned(16)));
oaes_ctx *aes_ctx;
};
#endif
void cryptonight_hash_aesni(void *ctx2, const char *input, char *output, uint32_t len) {
#ifdef __amd64
struct cryptonight_ctx *ctx = ctx2;
uint8_t ExpandedKey[256];
hash_process(&ctx->state.hs, (const uint8_t*) input, len);
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) ctx->long_state;
expkey = (__m128i *) ExpandedKey;
xmminput = (__m128i *) ctx->text;
for (int i = 0; __builtin_expect(i < 0x4000, 1); ++i) {
for (int j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i << 3)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i << 3) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i << 3) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i << 3) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i << 3) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i << 3) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i << 3) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i << 3) + 7]), xmminput[7]);
}
for (int i = 0; i < 2; i++) {
ctx->a[i] = ((uint64_t *) ctx->state.k)[i] ^ ((uint64_t *) ctx->state.k)[i + 4];
ctx->b[i] = ((uint64_t *) ctx->state.k)[i + 2] ^ ((uint64_t *) ctx->state.k)[i + 6];
}
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t a[2] __attribute((aligned(16))), b[2] __attribute((aligned(16)));
a[0] = ctx->a[0];
a[1] = ctx->a[1];
for (int i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_load_si128((__m128i * ) & ctx->long_state[a[0] & 0x1FFFF0]);
__m128i a_x = _mm_load_si128((__m128i *) a);
uint64_t c[2];
c_x = _mm_aesenc_si128(c_x, a_x);
_mm_store_si128((__m128i *) c, c_x);
__builtin_prefetch(&ctx->long_state[c[0] & 0x1FFFF0], 0, 1);
b_x = _mm_xor_si128(b_x, c_x);
_mm_store_si128((__m128i * ) & ctx->long_state[a[0] & 0x1FFFF0], b_x);
VARIANT_WEB_1_1(&ctx->long_state[a[0] & 0x1FFFF0]);
uint64_t *nextblock = (uint64_t * ) & ctx->long_state[c[0] & 0x1FFFF0];
uint64_t b[2];
b[0] = nextblock[0];
b[1] = nextblock[1];
{
uint64_t hi, lo;
// hi,lo = 64bit x 64bit multiply of c[0] and b[0]
__asm__("mulq %3\n\t"
: "=d" (hi),
"=a" (lo)
: "%a" (c[0]),
"rm" (b[0])
: "cc" );
a[0] += hi;
a[1] += lo;
}
uint64_t *dst = (uint64_t*)&ctx->long_state[c[0] & 0x1FFFF0];
dst[0] = a[0];
dst[1] = a[1];
a[0] ^= b[0];
a[1] ^= b[1];
VARIANT_WEB_1_2(dst);
b_x = c_x;
__builtin_prefetch(&ctx->long_state[a[0] & 0x1FFFF0], 0, 3);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
//for (i = 0; likely(i < MEMORY); i += INIT_SIZE_BYTE)
// aesni_parallel_xor(&ctx->text, ExpandedKey, &ctx->long_state[i]);
for (int i = 0; __builtin_expect(i < 0x4000, 1); ++i) {
xmminput[0] = _mm_xor_si128(longoutput[(i << 3)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i << 3) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i << 3) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i << 3) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i << 3) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i << 3) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i << 3) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i << 3) + 7], xmminput[7]);
for (int j = 0; j < 10; j++) {
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
hash_permutation(&ctx->state.hs);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
#else
cryptonight_hash(ctx2, input, output, len);
#endif
}