-
Notifications
You must be signed in to change notification settings - Fork 116
/
dcservoProMicro_trapezoidal.ino
283 lines (251 loc) · 9.94 KB
/
dcservoProMicro_trapezoidal.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
/*
Miguel Sanchez 2016
This program uses an Arduino Pro Micro variant for a closed-loop control of a DC-motor.
Motor motion is detected by a quadrature encoder.
Two inputs named STEP and DIR allow changing the target position.
Serial port prints current position and target position every second.
Serial input can be used to feed a new location for the servo (no CR LF).
Pins used:
Digital inputs 2 & 3 are connected to the two encoder signals (AB).
Digital input 0 is the STEP input.
Analog input A0 is the DIR input.
Digital outputs 6 & 7 control the direction outputs for the motor (I am using half TB6612FNG here).
Digital output 9 is PWM motor control
Please note PID gains kp, ki, kd need to be tuned to each different setup.
*/
// for 16-bit PWM on pin 9
#define PWM OCR1A
#include <EEPROM.h>
#include <PID_v1.h>
#define encoder0PinA 3 // PD0;
#define encoder0PinB 2 // PD1;
#define M1 6 // No motor's PWM outputs
#define M2 7 // just set the direction
int pos[1000]; int p = 0;
double kp = 3, ki = 0, kd = 0.0;
double feed = 50;
double input = 0, output = 0, setpoint = 0;
PID myPID(&input, &output, &setpoint, kp, ki, kd, DIRECT);
// speed loop
double motor = 0, setspeed = 100, vel = 0;
double vkp = 1, vki = 1, vkd = 0;
PID speed(&vel, &motor, &setspeed, vkp, vki, vkd, DIRECT);
volatile long encoder0Pos = 0;
boolean auto1 = false, auto2 = false, counting = false;
long previousMillis = 0; // will store last time LED was updated
long target1 = 0; // destination location at any moment
//for motor control ramps 1.4
bool newStep = false;
bool oldStep = false;
bool dir = false;
byte skip = 0;
float accel = 100.0; // desired acceleration in mm/s^2
void setup() {
pinMode(encoder0PinA, INPUT);
pinMode(encoder0PinB, INPUT);
pinMode(M1, OUTPUT);
pinMode(M2, OUTPUT);
attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 3
attachInterrupt(1, encoderInt, CHANGE); // encoder pin on interrupt 1 - pin 2
pinMode(9, OUTPUT);
/*
// Set timer 1 to 16-bit Fast PWM
ICR1 = 0xFFFF;
TCCR1A = 0b10101010;
TCCR1B = 0b00011001;
PWM=0; */
//pinMode(0,OUTPUT); // eliminar
attachInterrupt(2, countStep , RISING); // step input on interrupt 2 - pin 0
TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM
Serial.begin (115200);
help();
recoverPIDfromEEPROM();
//Setup the pid
myPID.SetMode(AUTOMATIC);
myPID.SetSampleTime(1);
myPID.SetOutputLimits(-255, 255);
speed.SetMode(AUTOMATIC);
speed.SetSampleTime(1);
speed.SetOutputLimits(-255, 255);
}
void loop() {
vel = encoder0Pos - input;
input = encoder0Pos;
setpoint = target1;
while(!myPID.Compute()); // wait till PID is actually computed
setspeed = output;
if (Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly
if (auto1) if (millis() % 1000 == 0) trapezoidal(random(6000)); //target1 = random(2000); // that was for self test with no input from main controller
if (auto2) if (millis() % 1000 == 0) printPos();
//if(counting && abs(input-target1)<15) counting=false;
if ( speed.Compute() && counting ) { // only sample when PID updates
pos[p] = encoder0Pos;
if (p < 999) p++;
else counting = false;
}
pwmOut(motor);
}
/*
void pwmOut(int out) {
if(out<0) { analogWrite(M1,0); analogWrite(M2,abs(out)); }
else { analogWrite(M2,0); analogWrite(M1,abs(out)); }
}
*/
void pwmOut(int out) {
if (out > 0) {
digitalWrite(M1, 0);
digitalWrite(M2, 1);
}
else {
digitalWrite(M1, 1);
digitalWrite(M2, 0);
}
analogWrite(9, abs(out));
//PWM = out;
}
const int QEM [16] = {0, -1, 1, 2, 1, 0, 2, -1, -1, 2, 0, 1, 2, 1, -1, 0}; // Quadrature Encoder Matrix
static unsigned char New, Old;
void encoderInt() { // handle pin change interrupt for D2
Old = New;
New = PIND & 3; //(PINB & 1 )+ ((PIND & 4) >> 1); //
encoder0Pos += QEM [Old * 4 + New];
}
void countStep() {
if (PINF & B10000000) target1--; // pin A0 represents direction == PF7 en Pro Micro
else target1++;
}
void process_line() {
char cmd = Serial.read();
if (cmd > 'Z') cmd -= 32;
switch (cmd) {
case 'P': kp = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case 'D': kd = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case 'I': ki = Serial.parseFloat(); myPID.SetTunings(kp, ki, kd); break;
case '?': printPos(); break;
case 'X': target1 = Serial.parseInt(); counting = true; for (int i = 0; i < p; i++) pos[i] = 0; p = 0; break;
case 'T': auto1 = !auto1; break;
case 'A': auto2 = !auto2; break;
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.print(kd); Serial.print(" VP="); Serial.print(vkp); Serial.print(" VI="); Serial.println(vki); break;
case 'H': help(); break;
case 'W': writetoEEPROM(); break;
case 'K': eedump(); break;
case 'R': recoverPIDfromEEPROM() ; break;
case 'S': for (int i = 0; i < p; i++) Serial.println(pos[i]); break;
case 'Z': detachInterrupt(2); break; // from then on, ignore step pulses (good for tests)
case 'F': feed = Serial.parseFloat(); break;
case 'V': vkp = Serial.parseFloat(); speed.SetTunings(vkp, vki, vkd); break;
case 'G': vki = Serial.parseFloat(); speed.SetTunings(vkp, vki, vkd); break;
case 'Y': counting = true; for (int i = 0; i < p; i++) pos[i] = 0; p = 0; trapezoidal(Serial.parseInt()); break; // performs a trapezoidal move
case '@': accel = Serial.parseFloat(); break;
}
while (Serial.read() != 10); // dump extra characters till LF is seen (you can use CRLF or just LF)
}
void printPos() {
Serial.print(F("Position=")); Serial.print(encoder0Pos); Serial.print(F(" PID_output=")); Serial.print(output); Serial.print(F(" Target=")); Serial.println(setpoint);
}
void help() {
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
Serial.println(F("by misan"));
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
Serial.println(F("P123.34 sets proportional term to 123.34"));
Serial.println(F("I123.34 sets integral term to 123.34"));
Serial.println(F("D123.34 sets derivative term to 123.34"));
Serial.println(F("? prints out current encoder, output and setpoint values"));
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
Serial.println(F("Q will print out the current values of P, I and D parameters"));
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
Serial.println(F("H will print this help message again"));
Serial.println(F("A will toggle on/off showing regulator status every second"));
Serial.println(F("F sets desired motion speed"));
Serial.println(F("V sets speed proportional gain"));
Serial.println(F("G sets speed integral gain"));
Serial.println(F("Y123.34 it is like X but using trapezoidal motion"));
Serial.println(F("@123.34 sets [trapezoidal] acceleration"));
Serial.println(F("Z disables STEP input"));
}
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
eeput(kp, 0);
eeput(ki, 4);
eeput(kd, 8);
double cks = 0;
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
eeput(cks, 12);
Serial.println("\nPID values stored to EEPROM");
//Serial.println(cks);
}
void recoverPIDfromEEPROM() {
double cks = 0;
double cksEE;
for (int i = 0; i < 12; i++) cks += EEPROM.read(i);
cksEE = eeget(12);
//Serial.println(cks);
if (cks == cksEE) {
Serial.println(F("*** Found PID values on EEPROM"));
kp = eeget(0);
ki = eeget(4);
kd = eeget(8);
myPID.SetTunings(kp, ki, kd);
}
else Serial.println(F("*** Bad checksum"));
}
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
char * addr = (char * ) &value;
for (int i = dir; i < dir + 4; i++) EEPROM.write(i, addr[i - dir]);
}
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
double value;
char * addr = (char * ) &value;
for (int i = dir; i < dir + 4; i++) addr[i - dir] = EEPROM.read(i);
return value;
}
void eedump() {
for (int i = 0; i < 16; i++) {
Serial.print(EEPROM.read(i), HEX);
Serial.print(" ");
} Serial.println();
}
void trapezoidal(int destination) { // it will use acceleration and feed values to restrict the motion following a trapezoidal pattern
long a1 = millis();
int distance = destination - setpoint; // if positive go +x
int finalPoint = setpoint + distance;
boolean dirPos = true;
if (distance < 0) {
distance = -distance; // me quedo con el valor absoluto del movimiento
dirPos = false;
}
float xm = feed * feed / accel;
float t1, t2;
if (distance <= xm) t1 = t2 = sqrt(distance / accel); // triangular
else { // trapezoidal
t1 = sqrt(xm / accel); // t1 = end of accel
t2 = (distance - xm) / feed + t1; // t2 = end of coasting
}
// Ok, I know what to do next, so let's perform the actual motion
float t = 0, spd = 0.0;
float dt = 1e-3;
float da = accel * dt;
float covered = setpoint;
float maxt = t1 + t2;
while (t < maxt) {
t += dt;
if (t < t1) spd += da; else if (t >= t2) spd -= da;
if ( dirPos ) covered += spd * dt; else covered -= spd * dt; // calculate new target position
//vel = encoder0Pos - input;
input = encoder0Pos;
setpoint = covered;
while(!myPID.Compute()); // espero a que termine el cálculo
setspeed = output;
//speed.Compute();
pwmOut(output );
//digitalWrite(0,1-digitalRead(0));; just for time tracing purposes
// record data for S command
if (counting ) {
pos[p] = encoder0Pos;
if (p < 999) p++;
else counting = false;
}
}
//Serial.print(millis() - a1); Serial.print(F(" Err=")); Serial.println(encoder0Pos - covered);
target1 = covered;
}