-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathpset3.lyx
368 lines (297 loc) · 7.32 KB
/
pset3.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage{braket}
\renewcommand{\vec}[1]{\mathbf{#1}}
\renewcommand{\labelenumi}{(\alph{enumi})}
\renewcommand{\labelenumii}{(\roman{enumii})}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures false
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 0
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 2
\papersides 2
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section*
18.369 Problem Set 3
\end_layout
\begin_layout Standard
Due Wednesday, March 6.
\end_layout
\begin_layout Subsection*
Problem 1: Bloch-periodic eigenproblems
\end_layout
\begin_layout Standard
Suppose that we have a periodic system with period
\begin_inset Formula $a$
\end_inset
in the
\begin_inset Formula $x$
\end_inset
direction, and we look for Bloch-periodic eigenfunctions
\begin_inset Formula $\vec{H}(x+a,y,z)=e^{ika}\vec{H}(x,y,z)$
\end_inset
of the
\begin_inset Formula $\hat{\Theta}=\nabla\times\varepsilon^{-1}\nabla\times{}$
\end_inset
operator with these boundary conditions in
\begin_inset Formula $x$
\end_inset
, acting on a unit cell
\begin_inset Formula $x\in[0,a]$
\end_inset
(with some other boundary conditions in
\begin_inset Formula $y$
\end_inset
and
\begin_inset Formula $z$
\end_inset
).
(That is, we
\emph on
don't
\emph default
rewrite in terms of the periodic Bloch envelope and use
\begin_inset Formula $\hat{\Theta}_{k}$
\end_inset
.)
\end_layout
\begin_layout Enumerate
Explain why
\begin_inset Formula $\hat{\Theta}$
\end_inset
is still Hermitian with these boundary conditions: when we integrated by
parts, we had some boundary terms that we needed to vanish, and explain
why the boundary terms from
\begin_inset Formula $x=0$
\end_inset
and
\begin_inset Formula $x=a$
\end_inset
still vanish with Bloch-periodic boundary conditions.
(You can assume that the
\begin_inset Formula $y$
\end_inset
and
\begin_inset Formula $z$
\end_inset
boundary conditions were chosen so that those boundaries vanished.)
\end_layout
\begin_layout Enumerate
Why do
\begin_inset Formula $k$
\end_inset
and
\begin_inset Formula $k+\frac{2\pi}{a}$
\end_inset
give the same solutions to this Bloch-periodic eigenproblem? (Yes, we already
discussed the periodicity of
\begin_inset Formula $k$
\end_inset
from other perspectives in class, but you should be able to see it directly
here without reference to any of our previous arguments.)
\end_layout
\begin_layout Subsection*
Problem 2: Periodic waveguide guidance proof
\end_layout
\begin_layout Standard
In class, we showed by a variational proof that any
\begin_inset Formula $\varepsilon(y)$
\end_inset
, in two dimensions, gives rise to at least one guided mode whenever
\begin_inset Formula $\varepsilon(y)^{-1}=\varepsilon_{\textrm{lo}}^{-1}-\Delta(y)$
\end_inset
for
\begin_inset Formula $\int\Delta>0$
\end_inset
and
\begin_inset Formula $\int|\Delta|<\infty$
\end_inset
.
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
As in class, the latter condition on
\begin_inset Formula $\Delta$
\end_inset
will allow you to swap limits and integrals for any integrand whose magnitude
is bounded above by some constant times
\begin_inset Formula $|\Delta|$
\end_inset
(by Lebesgue's dominated convergence theorem).
\end_layout
\end_inset
At least, we showed it for the
\begin_inset Formula $H_{z}$
\end_inset
polarization (
\begin_inset Formula $\vec{H}$
\end_inset
in the
\begin_inset Formula $\hat{\vec{z}}$
\end_inset
direction).
Now, you will show the same thing much more generally, but using the same
basic technique.
\end_layout
\begin_layout Enumerate
Let
\begin_inset Formula $\varepsilon(x,y)^{-1}=1-\Delta(x,y)$
\end_inset
be a periodic function
\begin_inset Formula $\Delta(x,y)=\Delta(x+a,y)$
\end_inset
, with
\begin_inset Formula $\int|\Delta|<\infty$
\end_inset
and
\begin_inset Formula $\int_{0}^{a}\int_{-\infty}^{\infty}\Delta(x,y)dxdy>0$
\end_inset
.
Prove that at least one
\begin_inset Formula $H_{z}$
\end_inset
-polarized guided mode exists, by choosing an appropriate (simple!) trial
function of the form
\begin_inset Formula $\vec{H}(x,y)=u(x,y)e^{ikx}\hat{\vec{z}}$
\end_inset
.
That is, show by the variational theorem that
\begin_inset Formula $\omega^{2}<c^{2}k^{2}$
\end_inset
for the lowest-frequency eigenmode.
(It is sufficient to show it for
\begin_inset Formula $|k|\leq\pi/a$
\end_inset
, by periodicity in
\begin_inset Formula $k$
\end_inset
-space; for
\begin_inset Formula $|k|>\pi/a$
\end_inset
, the light line is not
\begin_inset Formula $\omega=c|k|$
\end_inset
.)
\end_layout
\begin_layout Enumerate
Prove the same thing as in (a), but for the
\begin_inset Formula $E_{z}$
\end_inset
polarization (
\begin_inset Formula $\vec{E}$
\end_inset
in the
\begin_inset Formula $\hat{\vec{z}}$
\end_inset
direction).
Hint: you will need to pick a trial function of the form
\begin_inset Formula $\vec{H}(x,y)=[u(x,y)\hat{\vec{x}}+v(x,y)\hat{\vec{y}}]e^{ikx}$
\end_inset
where
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
are some (simple!) functions such that
\begin_inset Formula $\nabla\cdot\vec{H}=0$
\end_inset
.
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
You might be tempted, for the TM polarization, to use the
\begin_inset Formula $\vec{E}$
\end_inset
form of the variational theorem that you derived in problem
\begin_inset space ~
\end_inset
1, since the proof in that case will be somewhat simpler: you can just choose
\begin_inset Formula $\vec{E}(x,y)=u(x,y)e^{ikx}\hat{\vec{z}}$
\end_inset
and you will have
\begin_inset Formula $\nabla\cdot\varepsilon\vec{E}=0$
\end_inset
automatically.
However, this will lead to an inequivalent condition
\begin_inset Formula $\int(\varepsilon-1)>0$
\end_inset
instead of
\begin_inset Formula $\int\Delta=\int\frac{\varepsilon-1}{\varepsilon}>0$
\end_inset
.
\end_layout
\end_inset
\end_layout
\end_body
\end_document