forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segNet.h
149 lines (119 loc) · 5.32 KB
/
segNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*
* http://github.com/dusty-nv/jetson-inference
*/
#ifndef __SEGMENTATION_NET_H__
#define __SEGMENTATION_NET_H__
#include "tensorNet.h"
/**
* Name of default input blob for segmentation model.
* @ingroup deepVision
*/
#define SEGNET_DEFAULT_INPUT "data"
/**
* Name of default output blob for segmentation model.
* @ingroup deepVision
*/
#define SEGNET_DEFAULT_OUTPUT "score_fr_21classes"
/**
* Image segmentation with FCN-Alexnet or custom models, using TensorRT.
* @ingroup deepVision
*/
class segNet : public tensorNet
{
public:
/**
* Network model enumeration.
*/
enum NetworkType
{
FCN_ALEXNET_PASCAL_VOC, /**< FCN-Alexnet trained on Pascal VOC dataset. */
FCN_ALEXNET_SYNTHIA_CVPR16, /**< FCN-Alexnet trained on SYNTHIA CVPR16 dataset. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_SYNTHIA_SUMMER_HD, /**< FCN-Alexnet trained on SYNTHIA SEQS summer datasets. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_SYNTHIA_SUMMER_SD, /**< FCN-Alexnet trained on SYNTHIA SEQS summer datasets. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_CITYSCAPES_HD, /**< FCN-Alexnet trained on Cityscapes dataset with 21 classes. */
FCN_ALEXNET_CITYSCAPES_SD, /**< FCN-Alexnet trained on Cityscapes dataset with 21 classes. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_AERIAL_FPV_720p, /**< FCN-Alexnet trained on aerial first-person view of the horizon line for drones, 1280x720 and 21 output classes */
/* add new models here */
SEGNET_CUSTOM
};
/**
* Load a new network instance
*/
static segNet* Create( NetworkType networkType=FCN_ALEXNET_CITYSCAPES_SD, uint32_t maxBatchSize=2 );
/**
* Load a new network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param class_labels File path to list of class name labels
* @param class_colors File path to list of class colors
* @param input Name of the input layer blob. @see SEGNET_DEFAULT_INPUT
* @param output Name of the output layer blob. @see SEGNET_DEFAULT_OUTPUT
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static segNet* Create( const char* prototxt_path, const char* model_path,
const char* class_labels, const char* class_colors=NULL,
const char* input = SEGNET_DEFAULT_INPUT,
const char* output = SEGNET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=2 );
/**
* Load a new network instance by parsing the command line.
*/
static segNet* Create( int argc, char** argv );
/**
* Destroy
*/
virtual ~segNet();
/**
* Produce the segmentation overlay alpha blended on top of the original image.
* @param input float4 input image in CUDA device memory, RGBA colorspace with values 0-255.
* @param output float4 output image in CUDA device memory, RGBA colorspace with values 0-255.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param alpha alpha blending value indicating transparency of the overlay.
* @param ignore_class label name of class to ignore in the classification (or NULL to process all).
* @returns true on success, false on error.
*/
bool Overlay( float* input, float* output, uint32_t width, uint32_t height, const char* ignore_class="void" );
/**
* Find the ID of a particular class (by label name).
*/
int FindClassID( const char* label_name );
/**
* Retrieve the number of object classes supported in the detector
*/
inline uint32_t GetNumClasses() const { return DIMS_C(mOutputs[0].dims); }
/**
* Retrieve the description of a particular class.
*/
inline const char* GetClassLabel( uint32_t id ) const { return mClassLabels[id].c_str(); }
/**
* Retrieve the class synset category of a particular class.
*/
inline float* GetClassColor( uint32_t id ) const { return mClassColors[0] + (id*4); }
/**
* Set the visualization color of a particular class of object.
*/
void SetClassColor( uint32_t classIndex, float r, float g, float b, float a=255.0f );
/**
* Set a global alpha value for all classes (between 0-255),
* (optionally except for those that have been explicitly set).
*/
void SetGlobalAlpha( float alpha, bool explicit_exempt=true );
/**
* Retrieve the network type (alexnet or googlenet)
*/
inline NetworkType GetNetworkType() const { return mNetworkType; }
/**
* Retrieve a string describing the network name.
*/
inline const char* GetNetworkName() const { return (mNetworkType != SEGNET_CUSTOM ? "FCN_Alexnet" : "segNet"); }
protected:
segNet();
bool loadClassColors( const char* filename );
bool loadClassLabels( const char* filename );
std::vector<std::string> mClassLabels;
float* mClassColors[2]; /**< array of overlay colors in shared CPU/GPU memory */
uint8_t* mClassMap[2]; /**< runtime buffer for the argmax-classified class index of each tile */
NetworkType mNetworkType;
};
#endif