forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorNet.cpp
411 lines (317 loc) · 11.1 KB
/
tensorNet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
* http://github.com/dusty-nv/jetson-inference
*/
#include "tensorNet.h"
#include "cudaMappedMemory.h"
#include "cudaResize.h"
#include <iostream>
#include <fstream>
#if NV_TENSORRT_MAJOR > 1
#define CREATE_INFER_BUILDER nvinfer1::createInferBuilder
#define CREATE_INFER_RUNTIME nvinfer1::createInferRuntime
#else
#define CREATE_INFER_BUILDER createInferBuilder
#define CREATE_INFER_RUNTIME createInferRuntime
#endif
// constructor
tensorNet::tensorNet()
{
mEngine = NULL;
mInfer = NULL;
mContext = NULL;
mWidth = 0;
mHeight = 0;
mInputSize = 0;
mMaxBatchSize = 0;
mInputCPU = NULL;
mInputCUDA = NULL;
mEnableDebug = false;
mEnableProfiler = false;
mEnableFP16 = false;
mOverride16 = false;
#if NV_TENSORRT_MAJOR < 2
memset(&mInputDims, 0, sizeof(Dims3));
#endif
}
// Destructor
tensorNet::~tensorNet()
{
if( mEngine != NULL )
{
mEngine->destroy();
mEngine = NULL;
}
if( mInfer != NULL )
{
mInfer->destroy();
mInfer = NULL;
}
}
// EnableProfiler
void tensorNet::EnableProfiler()
{
mEnableProfiler = true;
if( mContext != NULL )
mContext->setProfiler(&gProfiler);
}
// EnableDebug
void tensorNet::EnableDebug()
{
mEnableDebug = true;
}
// DisableFP16 (i.e. for debugging or unsupported network)
void tensorNet::DisableFP16()
{
mOverride16 = true;
}
// Create an optimized GIE network from caffe prototxt and model file
bool tensorNet::ProfileModel(const std::string& deployFile, // name for caffe prototxt
const std::string& modelFile, // name for model
const std::vector<std::string>& outputs, // network outputs
unsigned int maxBatchSize, // batch size - NB must be at least as large as the batch we want to run with)
std::ostream& gieModelStream) // output stream for the GIE model
{
// create API root class - must span the lifetime of the engine usage
nvinfer1::IBuilder* builder = CREATE_INFER_BUILDER(gLogger);
nvinfer1::INetworkDefinition* network = builder->createNetwork();
builder->setDebugSync(mEnableDebug);
builder->setMinFindIterations(3); // allow time for TX1 GPU to spin up
builder->setAverageFindIterations(2);
// parse the caffe model to populate the network, then set the outputs
nvcaffeparser1::ICaffeParser* parser = nvcaffeparser1::createCaffeParser();
mEnableFP16 = (mOverride16 == true) ? false : builder->platformHasFastFp16();
printf(LOG_GIE "platform %s FP16 support.\n", mEnableFP16 ? "has" : "does not have");
printf(LOG_GIE "loading %s %s\n", deployFile.c_str(), modelFile.c_str());
nvinfer1::DataType modelDataType = mEnableFP16 ? nvinfer1::DataType::kHALF : nvinfer1::DataType::kFLOAT; // create a 16-bit model if it's natively supported
const nvcaffeparser1::IBlobNameToTensor *blobNameToTensor =
parser->parse(deployFile.c_str(), // caffe deploy file
modelFile.c_str(), // caffe model file
*network, // network definition that the parser will populate
modelDataType);
if( !blobNameToTensor )
{
printf(LOG_GIE "failed to parse caffe network\n");
return false;
}
// the caffe file has no notion of outputs, so we need to manually say which tensors the engine should generate
const size_t num_outputs = outputs.size();
for( size_t n=0; n < num_outputs; n++ )
{
nvinfer1::ITensor* tensor = blobNameToTensor->find(outputs[n].c_str());
if( !tensor )
printf(LOG_GIE "failed to retrieve tensor for output '%s'\n", outputs[n].c_str());
else
printf(LOG_GIE "retrieved output tensor '%s'\n", tensor->getName());
network->markOutput(*tensor);
}
// Build the engine
printf(LOG_GIE "configuring CUDA engine\n");
builder->setMaxBatchSize(maxBatchSize);
builder->setMaxWorkspaceSize(16 << 20);
// set up the network for paired-fp16 format
if(mEnableFP16)
builder->setHalf2Mode(true);
printf(LOG_GIE "building CUDA engine\n");
nvinfer1::ICudaEngine* engine = builder->buildCudaEngine(*network);
if( !engine )
{
printf(LOG_GIE "failed to build CUDA engine\n");
return false;
}
printf(LOG_GIE "completed building CUDA engine\n");
// we don't need the network any more, and we can destroy the parser
network->destroy();
parser->destroy(); //delete parser;
// serialize the engine, then close everything down
#if NV_TENSORRT_MAJOR > 1
nvinfer1::IHostMemory* serMem = engine->serialize();
if( !serMem )
{
printf(LOG_GIE "failed to serialize CUDA engine\n");
return false;
}
gieModelStream.write((const char*)serMem->data(), serMem->size());
#else
engine->serialize(gieModelStream);
#endif
engine->destroy();
builder->destroy();
return true;
}
// LoadNetwork
bool tensorNet::LoadNetwork( const char* prototxt_path, const char* model_path, const char* mean_path,
const char* input_blob, const char* output_blob, uint32_t maxBatchSize )
{
std::vector<std::string> outputs;
outputs.push_back(output_blob);
return LoadNetwork(prototxt_path, model_path, mean_path, input_blob, outputs, maxBatchSize );
}
// LoadNetwork
bool tensorNet::LoadNetwork( const char* prototxt_path, const char* model_path, const char* mean_path,
const char* input_blob, const std::vector<std::string>& output_blobs,
uint32_t maxBatchSize )
{
if( !prototxt_path || !model_path )
return false;
/*
* attempt to load network from cache before profiling with tensorRT
*/
std::stringstream gieModelStream;
gieModelStream.seekg(0, gieModelStream.beg);
char cache_path[512];
sprintf(cache_path, "%s.%u.tensorcache", model_path, maxBatchSize);
printf(LOG_GIE "attempting to open cache file %s\n", cache_path);
std::ifstream cache( cache_path );
if( !cache )
{
printf(LOG_GIE "cache file not found, profiling network model\n");
if( !ProfileModel(prototxt_path, model_path, output_blobs, maxBatchSize, gieModelStream) )
{
printf("failed to load %s\n", model_path);
return 0;
}
printf(LOG_GIE "network profiling complete, writing cache to %s\n", cache_path);
std::ofstream outFile;
outFile.open(cache_path);
outFile << gieModelStream.rdbuf();
outFile.close();
gieModelStream.seekg(0, gieModelStream.beg);
printf(LOG_GIE "completed writing cache to %s\n", cache_path);
}
else
{
printf(LOG_GIE "loading network profile from cache... %s\n", cache_path);
gieModelStream << cache.rdbuf();
cache.close();
// test for half FP16 support
nvinfer1::IBuilder* builder = CREATE_INFER_BUILDER(gLogger);
if( builder != NULL )
{
mEnableFP16 = !mOverride16 && builder->platformHasFastFp16();
printf(LOG_GIE "platform %s FP16 support.\n", mEnableFP16 ? "has" : "does not have");
builder->destroy();
}
}
printf(LOG_GIE "%s loaded\n", model_path);
/*
* create runtime inference engine execution context
*/
nvinfer1::IRuntime* infer = CREATE_INFER_RUNTIME(gLogger);
if( !infer )
{
printf(LOG_GIE "failed to create InferRuntime\n");
return 0;
}
#if NV_TENSORRT_MAJOR > 1
gieModelStream.seekg(0, std::ios::end);
const int modelSize = gieModelStream.tellg();
gieModelStream.seekg(0, std::ios::beg);
void* modelMem = malloc(modelSize);
if( !modelMem )
{
printf(LOG_GIE "failed to allocate %i bytes to deserialize model\n", modelSize);
return 0;
}
gieModelStream.read((char*)modelMem, modelSize);
nvinfer1::ICudaEngine* engine = infer->deserializeCudaEngine(modelMem, modelSize, NULL);
#else
nvinfer1::ICudaEngine* engine = infer->deserializeCudaEngine(gieModelStream);
#endif
if( !engine )
{
printf(LOG_GIE "failed to create CUDA engine\n");
return 0;
}
nvinfer1::IExecutionContext* context = engine->createExecutionContext();
if( !context )
{
printf(LOG_GIE "failed to create execution context\n");
return 0;
}
if( mEnableDebug )
{
printf(LOG_GIE "enabling context debug sync.\n");
context->setDebugSync(true);
}
if( mEnableProfiler )
context->setProfiler(&gProfiler);
printf(LOG_GIE "CUDA engine context initialized with %u bindings\n", engine->getNbBindings());
mInfer = infer;
mEngine = engine;
mContext = context;
/*
* determine dimensions of network input bindings
*/
const int inputIndex = engine->getBindingIndex(input_blob);
printf(LOG_GIE "%s input binding index: %i\n", model_path, inputIndex);
#if NV_TENSORRT_MAJOR > 1
nvinfer1::Dims inputDims = engine->getBindingDimensions(inputIndex);
#else
Dims3 inputDims = engine->getBindingDimensions(inputIndex);
#endif
size_t inputSize = maxBatchSize * DIMS_C(inputDims) * DIMS_H(inputDims) * DIMS_W(inputDims) * sizeof(float);
printf(LOG_GIE "%s input dims (b=%u c=%u h=%u w=%u) size=%zu\n", model_path, maxBatchSize, DIMS_C(inputDims), DIMS_H(inputDims), DIMS_W(inputDims), inputSize);
/*
* allocate memory to hold the input image
*/
if( !cudaAllocMapped((void**)&mInputCPU, (void**)&mInputCUDA, inputSize) )
{
printf("failed to alloc CUDA mapped memory for tensorNet input, %zu bytes\n", inputSize);
return false;
}
mInputSize = inputSize;
mWidth = DIMS_W(inputDims);
mHeight = DIMS_H(inputDims);
mMaxBatchSize = maxBatchSize;
/*
* setup network output buffers
*/
const int numOutputs = output_blobs.size();
for( int n=0; n < numOutputs; n++ )
{
const int outputIndex = engine->getBindingIndex(output_blobs[n].c_str());
printf(LOG_GIE "%s output %i %s binding index: %i\n", model_path, n, output_blobs[n].c_str(), outputIndex);
#if NV_TENSORRT_MAJOR > 1
nvinfer1::Dims outputDims = engine->getBindingDimensions(outputIndex);
#else
Dims3 outputDims = engine->getBindingDimensions(outputIndex);
#endif
size_t outputSize = maxBatchSize * DIMS_C(outputDims) * DIMS_H(outputDims) * DIMS_W(outputDims) * sizeof(float);
printf(LOG_GIE "%s output %i %s dims (b=%u c=%u h=%u w=%u) size=%zu\n", model_path, n, output_blobs[n].c_str(), maxBatchSize, DIMS_C(outputDims), DIMS_H(outputDims), DIMS_W(outputDims), outputSize);
// allocate output memory
void* outputCPU = NULL;
void* outputCUDA = NULL;
if( !cudaAllocMapped((void**)&outputCPU, (void**)&outputCUDA, outputSize) )
{
printf("failed to alloc CUDA mapped memory for %u output classes\n", DIMS_C(outputDims));
return false;
}
outputLayer l;
l.CPU = (float*)outputCPU;
l.CUDA = (float*)outputCUDA;
l.size = outputSize;
#if NV_TENSORRT_MAJOR > 1
DIMS_W(l.dims) = DIMS_W(outputDims);
DIMS_H(l.dims) = DIMS_H(outputDims);
DIMS_C(l.dims) = DIMS_C(outputDims);
#else
l.dims = outputDims;
#endif
l.name = output_blobs[n];
mOutputs.push_back(l);
}
#if NV_TENSORRT_MAJOR > 1
DIMS_W(mInputDims) = DIMS_W(inputDims);
DIMS_H(mInputDims) = DIMS_H(inputDims);
DIMS_C(mInputDims) = DIMS_C(inputDims);
#else
mInputDims = inputDims;
#endif
mPrototxtPath = prototxt_path;
mModelPath = model_path;
mInputBlobName = input_blob;
if( mean_path != NULL )
mMeanPath = mean_path;
printf("%s initialized.\n", mModelPath.c_str());
return true;
}