forked from dragen1860/Deep-Learning-with-TensorFlow-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae.py
147 lines (100 loc) · 3.74 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
def save_images(imgs, name):
new_im = Image.new('L', (280, 280))
index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1
new_im.save(name)
h_dim = 20
batchsz = 512
lr = 1e-3
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
z_dim = 10
class VAE(keras.Model):
def __init__(self):
super(VAE, self).__init__()
# Encoder
self.fc1 = layers.Dense(128)
self.fc2 = layers.Dense(z_dim) # get mean prediction
self.fc3 = layers.Dense(z_dim)
# Decoder
self.fc4 = layers.Dense(128)
self.fc5 = layers.Dense(784)
def encoder(self, x):
h = tf.nn.relu(self.fc1(x))
# get mean
mu = self.fc2(h)
# get variance
log_var = self.fc3(h)
return mu, log_var
def decoder(self, z):
out = tf.nn.relu(self.fc4(z))
out = self.fc5(out)
return out
def reparameterize(self, mu, log_var):
eps = tf.random.normal(log_var.shape)
std = tf.exp(log_var*0.5)
z = mu + std * eps
return z
def call(self, inputs, training=None):
# [b, 784] => [b, z_dim], [b, z_dim]
mu, log_var = self.encoder(inputs)
# reparameterization trick
z = self.reparameterize(mu, log_var)
x_hat = self.decoder(z)
return x_hat, mu, log_var
model = VAE()
model.build(input_shape=(4, 784))
optimizer = tf.optimizers.Adam(lr)
for epoch in range(1000):
for step, x in enumerate(train_db):
x = tf.reshape(x, [-1, 784])
with tf.GradientTape() as tape:
x_rec_logits, mu, log_var = model(x)
rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)
rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]
# compute kl divergence (mu, var) ~ N (0, 1)
# https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
kl_div = -0.5 * (log_var + 1 - mu**2 - tf.exp(log_var))
kl_div = tf.reduce_sum(kl_div) / x.shape[0]
loss = rec_loss + 1. * kl_div
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, 'kl div:', float(kl_div), 'rec loss:', float(rec_loss))
# evaluation
z = tf.random.normal((batchsz, z_dim))
logits = model.decoder(z)
x_hat = tf.sigmoid(logits)
x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.
x_hat = x_hat.astype(np.uint8)
save_images(x_hat, 'vae_images/sampled_epoch%d.png'%epoch)
x = next(iter(test_db))
x = tf.reshape(x, [-1, 784])
x_hat_logits, _, _ = model(x)
x_hat = tf.sigmoid(x_hat_logits)
x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() *255.
x_hat = x_hat.astype(np.uint8)
save_images(x_hat, 'vae_images/rec_epoch%d.png'%epoch)