Model Optimizer requires:
-
Python 3 or newer
-
[Optional] Please read about use cases that require Caffe* to be available on the machine in the documentation.
- Go to the Model Optimizer folder:
cd PATH_TO_INSTALL_DIR/deployment_tools/model_optimizer
-
Create virtual environment and activate it. This option is strongly recommended as it creates a Python sandbox and dependencies for the Model Optimizer do not influence global Python configuration, installed libraries etc. At the same time, special flag ensures that system-wide Python libraries are also available in this sandbox. Skip this step only if you do want to install all Model Optimizer dependencies globally:
- Create environment:
virtualenv -p /usr/bin/python3.6 .env3 --system-site-packages
- Activate it:
. .env3/bin/activate
- Create environment:
-
Install dependencies. If you want to convert models only from particular framework, you should use one of available
requirements_*.txt
files corresponding to the framework of choice. For example, for Caffe userequirements_caffe.txt
and so on. When you decide to switch later to other frameworks, please install dependencies for them using the same mechanism:pip3 install -r requirements.txt
Or you can use the installation scripts from the "install_prerequisites" directory.
-
[OPTIONAL] If you use Windows OS, most probably you get python version of
protobuf
library. It is known to be rather slow, and you can use a boosted version of library by building the .egg file (Python package format) yourself, using instructions below (section 'How to boost Caffe model loading') for the target OS and Python, or install it with the pre-built .egg (it is built for Python 3.4, 3.5, 3.6, 3.7):python3 -m easy_install protobuf-3.6.1-py3.6-win-amd64.egg
It overrides the protobuf python package installed by the previous command.
Set environment variable to enable boost in protobuf performance:
set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=cpp
- Run tests with:
python -m unittest discover -p "*_test.py" [-s PATH_TO_DIR]
- Run tests with:
coverage run -m unittest discover -p "*_test.py" [-s PATH_TO_DIR]
- Build html report:
coverage html
- Run the following command:
pylint mo/ extensions/ mo.py