forked from lucasb-eyer/big_vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer.py
186 lines (155 loc) · 6.94 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long,missing-function-docstring
r"""A config for transferring vit-augreg.
Best HP selected on (mini)val, expected test results (repeated 5 times):
ViT-Augreg-B/32:
Dataset, crop, learning rate, mean (%), range (%)
- ImageNet, inception_crop, 0.03, 83.27, [83.22...83.33]
- Cifar10, resmall_crop, 0.003, 98.55, [98.46...98.6]
- Cifar100, resmall_crop, 0.01, 91.35, [91.09...91.62]
- Pets, inception_crop, 0.003, 93.78, [93.62...94.00]
- Flowers, inception_crop, 0.003, 99.43, [99.42...99.45]
Command to run:
big_vision.train \
--config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop \
--workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03
"""
import big_vision.configs.common as bvcc
import ml_collections as mlc
def _set_model(config, model):
"""Load pre-trained models: vit or bit."""
# Reset the head to init (of zeros) when transferring.
config.model_load = dict(dont_load=['head/kernel', 'head/bias'])
if model == 'vit-i21k-augreg-b/32':
# Load "recommended" upstream B/32 from https://arxiv.org/abs/2106.10270
config.model_name = 'vit'
config.model_init = 'howto-i21k-B/32'
config.model = dict(variant='B/32', pool_type='tok')
elif model == 'vit-i21k-augreg-l/16':
config.model_name = 'vit'
config.model_init = 'howto-i21k-L/16'
config.model = dict(variant='L/16', pool_type='tok')
elif model == 'vit-s16':
config.model_name = 'vit'
config.model_init = 'i1k-s16-300ep'
config.model = dict(variant='S/16', pool_type='gap', posemb='sincos2d',
rep_size=True)
elif model == 'bit-m-r50x1':
config.model_name = 'bit_paper'
config.model_init = 'M'
config.model = dict(depth=50, width=1)
else:
raise ValueError(f'Unknown model: {model}, please define customized model.')
def _set_dataset(config, dataset, crop='inception_crop', h_res=448, l_res=384):
if dataset == 'cifar10':
_set_task(config, 'cifar10', 'train[:98%]', 'train[98%:]', 'test', 10, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'cifar100':
_set_task(config, 'cifar100', 'train[:98%]', 'train[98%:]', 'test', 100, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'imagenet2012':
_set_task(config, 'imagenet2012', 'train[:99%]', 'train[99%:]', 'validation', 1000, steps=20_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
_set_imagenet_variants(config)
elif dataset == 'oxford_iiit_pet':
_set_task(config, 'oxford_iiit_pet', 'train[:90%]', 'train[90%:]', 'test', 37, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'oxford_flowers102':
_set_task(config, 'oxford_flowers102', 'train[:90%]', 'train[90%:]', 'test', 102, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res)
else:
raise ValueError(
f'Unknown dataset: {dataset}, please define customized dataset.')
def _set_task(config, dataset, train, val, test, n_cls,
steps=20_000, warmup=500, lbl='label', crop='resmall_crop',
flip=True, h_res=448, l_res=384):
"""Vision task with val and test splits."""
config.total_steps = steps
config.schedule = dict(
warmup_steps=warmup,
decay_type='cosine',
)
config.input.data = dict(name=dataset, split=train)
pp_common = (
'|value_range(-1, 1)|'
f'onehot({n_cls}, key="{lbl}", key_result="labels")|'
'keep("image", "labels")'
)
if crop == 'inception_crop':
pp_train = f'decode|inception_crop({l_res})'
elif crop == 'resmall_crop':
pp_train = f'decode|resize_small({h_res})|random_crop({l_res})'
elif crop == 'resize_crop':
pp_train = f'decode|resize({h_res})|random_crop({l_res})'
else:
raise ValueError(f'Unknown crop: {crop}. Must be one of: '
'inception_crop, resmall_crop, resize_crop')
if flip:
pp_train += '|flip_lr'
config.input.pp = pp_train + pp_common
pp = f'decode|resize_small({h_res})|central_crop({l_res})' + pp_common
config.num_classes = n_cls
def get_eval(split):
return dict(
type='classification',
data=dict(name=dataset, split=split),
loss_name='softmax_xent',
log_steps=100,
pp_fn=pp,
)
config.evals = dict(val=get_eval(val), test=get_eval(test))
def _set_imagenet_variants(config, h_res=448, l_res=384):
"""Evaluation tasks on ImageNet variants: v2 and real."""
pp = (f'decode|resize_small({h_res})|central_crop({l_res})'
'|value_range(-1, 1)|onehot(1000, key="{lbl}", key_result="labels")|'
'keep("image", "labels")'
)
# Special-case rename for i1k (val+test -> minival+val)
config.evals.minival = config.evals.val
config.evals.val = config.evals.test
# NOTE: keep test == val for convenience in subsequent analysis.
config.evals.real = dict(type='classification')
config.evals.real.data = dict(name='imagenet2012_real', split='validation')
config.evals.real.pp_fn = pp.format(lbl='real_label')
config.evals.real.loss_name = config.loss
config.evals.real.log_steps = 100
config.evals.v2 = dict(type='classification')
config.evals.v2.data = dict(name='imagenet_v2', split='test')
config.evals.v2.pp_fn = pp.format(lbl='label')
config.evals.v2.loss_name = config.loss
config.evals.v2.log_steps = 100
def get_config(arg=None):
"""Config for adaptation."""
arg = bvcc.parse_arg(arg, model='vit', dataset='cifar10', crop='resmall_crop',
h_res=448, l_res=384, batch_size=512, fsdp=False,
runlocal=False)
config = mlc.ConfigDict()
config.input = {}
config.input.batch_size = arg.batch_size if not arg.runlocal else 8
config.input.shuffle_buffer_size = 50_000 if not arg.runlocal else 100
config.log_training_steps = 10
config.ckpt_steps = 1000
config.ckpt_timeout = 600
# Optimizer section
config.optax_name = 'big_vision.momentum_hp'
config.grad_clip_norm = 1.0
config.wd = None # That's our default, but just being explicit here!
config.loss = 'softmax_xent'
config.lr = 0.01
config.mixup = dict(p=0.0)
config.seed = 0
_set_dataset(config, arg.dataset, arg.crop, arg.h_res, arg.l_res)
_set_model(config, arg.model)
if arg.fsdp:
config.mesh = [('data', -1)]
config.sharding_strategy = [('.*', 'fsdp(axis="data")')]
config.sharding_rules = [('act_batch', ('data',))]
config.model.scan = True
return config