-
-
Notifications
You must be signed in to change notification settings - Fork 20
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue with "Neural Networks for Survival Analysis in R" article #370
Comments
Thanks! Without actually looking at this in detail, have you installed the most recent version of |
Yes, I have installed the most recent version of packageVersion("mlr3extralearners")
#> [1] '0.7.1.9000'
packageVersion("paradox")
#> [1] '1.0.0' Created on 2024-03-07 by the reprex package (v2.0.1) |
So it seems the issue is related with the recent |
@cxie19 Do a clean installation of the latest versions of:
and it will work |
@bblodfon Could you provide me the latest version numbers of these packages? I still have the same issue after removing and reinstalling these packages. |
Sure, you can also see the specific commit numbers below (since some developing packages from GitHub may have not updated to a new version yet and changes "accumulate" in the same development version): library(survivalmodels)
set_seed(1234)
library(mlr3)
library(mlr3proba)
## get the `whas` task from mlr3proba
whas <- tsk("whas")
## create our own task from the rats dataset
rats_data <- survival::rats
## convert characters to factors
rats_data$sex <- factor(rats_data$sex, levels = c("f", "m"))
rats <- TaskSurv$new("rats", rats_data, time = "time", event = "status")
## combine in list
tasks <- list(whas, rats)
library(paradox)
search_space <- ps(
## p_dbl for numeric valued parameters
dropout = p_dbl(lower = 0, upper = 1),
weight_decay = p_dbl(lower = 0, upper = 0.5),
learning_rate = p_dbl(lower = 0, upper = 1),
## p_int for integer valued parameters
nodes = p_int(lower = 1, upper = 32),
k = p_int(lower = 1, upper = 4)
)
search_space$extra_trafo <- function(x, param_set) {
x$num_nodes = rep(x$nodes, x$k)
x$nodes = x$k = NULL
return(x)
}
library(mlr3tuning)
create_autotuner <- function(learner) {
AutoTuner$new(
learner = learner,
search_space = search_space,
resampling = rsmp("holdout"),
measure = msr("surv.cindex"),
terminator = trm("evals", n_evals = 2),
tuner = tnr("random_search")
)
}
## learners are stored in mlr3extralearners
library(mlr3extralearners)
## load learners
learners <- lrns(
paste0("surv.", c("coxtime", "deephit", "deepsurv", "loghaz", "pchazard")),
frac = 0.3, early_stopping = TRUE, epochs = 10, optimizer = "adam"
)
# apply our function
learners <- lapply(learners, create_autotuner)
library(mlr3pipelines)
create_pipeops <- function(learner) {
po("encode") %>>% po("scale") %>>% po("learner", learner)
}
## apply our function
learners <- lapply(learners, create_pipeops)
learners[[1]]
#> Graph with 3 PipeOps:
#> ID State sccssors prdcssors
#> <char> <char> <char> <char>
#> encode <<UNTRAINED>> scale
#> scale <<UNTRAINED>> surv.coxtime.tuned encode
#> surv.coxtime.tuned <<UNTRAINED>> scale
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.1 (2022-06-23)
#> os Ubuntu 20.04.6 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Oslo
#> date 2024-03-13
#> pandoc 3.1.1 @ /usr/lib/rstudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.1)
#> bbotk 0.8.0 2024-02-29 [1] CRAN (R 4.2.1)
#> cachem 1.0.8 2023-05-01 [1] CRAN (R 4.2.1)
#> callr 3.7.3 2022-11-02 [1] CRAN (R 4.2.1)
#> checkmate 2.3.1 2023-12-04 [1] CRAN (R 4.2.1)
#> cli 3.6.1 2023-03-23 [1] CRAN (R 4.2.1)
#> codetools 0.2-19 2023-02-01 [1] CRAN (R 4.2.1)
#> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.2.1)
#> crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.1)
#> data.table 1.15.0 2024-01-30 [1] CRAN (R 4.2.1)
#> devtools * 2.4.5 2022-10-11 [1] CRAN (R 4.2.1)
#> dictionar6 0.1.3 2021-09-13 [1] CRAN (R 4.2.1)
#> digest 0.6.33 2023-07-07 [1] CRAN (R 4.2.1)
#> distr6 1.8.4 2023-11-23 [1] Github (xoopR/distr6@1854b22)
#> dplyr 1.1.2 2023-04-20 [1] CRAN (R 4.2.1)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.1)
#> evaluate 0.23 2023-11-01 [1] CRAN (R 4.2.1)
#> fansi 1.0.5 2023-10-08 [1] CRAN (R 4.2.1)
#> fastmap 1.1.1 2023-02-24 [1] CRAN (R 4.2.1)
#> fs 1.6.3 2023-07-20 [1] CRAN (R 4.2.1)
#> future 1.33.0 2023-07-01 [1] CRAN (R 4.2.1)
#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.1)
#> ggplot2 3.4.4 2023-10-12 [1] CRAN (R 4.2.1)
#> globals 0.16.2 2022-11-21 [1] CRAN (R 4.2.1)
#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.1)
#> gtable 0.3.4 2023-08-21 [1] CRAN (R 4.2.1)
#> here 1.0.1 2020-12-13 [1] CRAN (R 4.2.1)
#> htmltools 0.5.6 2023-08-10 [1] CRAN (R 4.2.1)
#> htmlwidgets 1.6.2 2023-03-17 [1] CRAN (R 4.2.1)
#> httpuv 1.6.11 2023-05-11 [1] CRAN (R 4.2.1)
#> jsonlite 1.8.7 2023-06-29 [1] CRAN (R 4.2.1)
#> knitr 1.43 2023-05-25 [1] CRAN (R 4.2.1)
#> later 1.3.1 2023-05-02 [1] CRAN (R 4.2.1)
#> lattice 0.21-8 2023-04-05 [1] CRAN (R 4.2.1)
#> lgr 0.4.4 2022-09-05 [1] CRAN (R 4.2.1)
#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.1)
#> listenv 0.9.0 2022-12-16 [1] CRAN (R 4.2.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.1)
#> Matrix 1.6-1 2023-08-14 [1] CRAN (R 4.2.1)
#> memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.1)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.2.1)
#> miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.1)
#> mlr3 * 0.18.0 2024-03-05 [1] CRAN (R 4.2.1)
#> mlr3extralearners * 0.7.1-9000 2024-03-08 [1] Github (mlr-org/mlr3extralearners@5baa86a)
#> mlr3misc 0.14.0 2024-02-15 [1] Github (mlr-org/mlr3misc@c0673db)
#> mlr3pipelines * 0.5.0-9000 2024-03-08 [1] Github (mlr-org/mlr3pipelines@c52d7e1)
#> mlr3proba * 0.6.0 2024-02-21 [1] Github (mlr-org/mlr3proba@ed6c351)
#> mlr3tuning * 0.20.0 2024-03-05 [1] CRAN (R 4.2.1)
#> mlr3viz 0.8.0 2024-03-05 [1] CRAN (R 4.2.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.1)
#> ooplah 0.2.0 2022-01-21 [1] CRAN (R 4.2.1)
#> palmerpenguins 0.1.1 2022-08-15 [1] CRAN (R 4.2.1)
#> paradox * 1.0.0 2024-02-28 [1] Github (mlr-org/paradox@5a353d9)
#> parallelly 1.36.0 2023-05-26 [1] CRAN (R 4.2.1)
#> param6 0.2.4 2022-10-31 [1] Github (xoopR/param6@0fa3577)
#> pillar 1.9.0 2023-03-22 [1] CRAN (R 4.2.1)
#> pkgbuild 1.4.2 2023-06-26 [1] CRAN (R 4.2.1)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.1)
#> pkgload 1.3.2.1 2023-07-08 [1] CRAN (R 4.2.1)
#> png 0.1-8 2022-11-29 [1] CRAN (R 4.2.1)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.1)
#> processx 3.8.2 2023-06-30 [1] CRAN (R 4.2.1)
#> profvis 0.3.8 2023-05-02 [1] CRAN (R 4.2.1)
#> promises 1.2.1 2023-08-10 [1] CRAN (R 4.2.1)
#> ps 1.7.5 2023-04-18 [1] CRAN (R 4.2.1)
#> purrr 1.0.2 2023-08-10 [1] CRAN (R 4.2.1)
#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.2.1)
#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.2.1)
#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.2.1)
#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.2.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.1)
#> rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.2.1)
#> Rcpp 1.0.11 2023-07-06 [1] CRAN (R 4.2.1)
#> remotes 2.4.2.1 2023-07-18 [1] CRAN (R 4.2.1)
#> reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.1)
#> reticulate 1.35.0 2024-01-31 [1] CRAN (R 4.2.1)
#> RhpcBLASctl 0.23-42 2023-02-11 [1] CRAN (R 4.2.1)
#> rlang 1.1.1 2023-04-28 [1] CRAN (R 4.2.1)
#> rmarkdown 2.24 2023-08-14 [1] CRAN (R 4.2.1)
#> rprojroot 2.0.3 2022-04-02 [1] CRAN (R 4.2.1)
#> rstudioapi 0.15.0 2023-07-07 [1] CRAN (R 4.2.1)
#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.1)
#> set6 0.2.6 2023-09-01 [1] Github (xoopR/set6@a901255)
#> shiny 1.7.5 2023-08-12 [1] CRAN (R 4.2.1)
#> stringi 1.7.12 2023-01-11 [1] CRAN (R 4.2.1)
#> stringr 1.5.0 2022-12-02 [1] CRAN (R 4.2.1)
#> styler 1.10.2 2023-08-29 [1] CRAN (R 4.2.1)
#> survival 3.5-7 2023-08-14 [1] CRAN (R 4.2.1)
#> survivalmodels * 0.1.19 2024-03-11 [1] Github (RaphaelS1/survivalmodels@f418791)
#> tibble 3.2.1 2023-03-20 [1] CRAN (R 4.2.1)
#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.1)
#> urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.1)
#> usethis * 2.2.2 2023-07-06 [1] CRAN (R 4.2.1)
#> utf8 1.2.4 2023-10-22 [1] CRAN (R 4.2.1)
#> uuid 1.1-1 2023-08-17 [1] CRAN (R 4.2.1)
#> vctrs 0.6.3 2023-06-14 [1] CRAN (R 4.2.1)
#> withr 2.5.2 2023-10-30 [1] CRAN (R 4.2.1)
#> xfun 0.40 2023-08-09 [1] CRAN (R 4.2.1)
#> xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.1)
#> yaml 2.3.7 2023-01-23 [1] CRAN (R 4.2.1)
#>
#> [1] /opt/R/4.2.1/lib/R/library
#>
#> ─ Python configuration ───────────────────────────────────────────────────────
#> python: /usr/bin/python3
#> libpython: /usr/lib/python3.8/config-3.8-x86_64-linux-gnu/libpython3.8.so
#> pythonhome: //usr://usr
#> version: 3.8.10 (default, Nov 22 2023, 10:22:35) [GCC 9.4.0]
#> numpy: /usr/lib/python3/dist-packages/numpy
#> numpy_version: 1.17.4
#> numpy: /usr/lib/python3/dist-packages/numpy
#>
#> NOTE: Python version was forced by RETICULATE_PYTHON_FALLBACK
#>
#> ────────────────────────────────────────────────────────────────────────────── Created on 2024-03-13 with reprex v2.0.2 |
@cxie19 solved? |
Yes, thank you @bblodfon. The problem is solved. |
Hi,
I was following the example presented on Neural Networks for Survival Analysis in R article, but I encountered an error:
The code is shown as below:
Created on 2024-03-06 by the reprex package (v2.0.1)
The text was updated successfully, but these errors were encountered: