-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmlr_pipeops_nn_elu.Rd
169 lines (159 loc) · 6.3 KB
/
mlr_pipeops_nn_elu.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/PipeOpTorchActivation.R
\name{mlr_pipeops_nn_elu}
\alias{mlr_pipeops_nn_elu}
\alias{PipeOpTorchELU}
\title{ELU Activation Function}
\description{
Applies element-wise,
\deqn{ELU(x) = max(0,x) + min(0, \alpha * (exp(x) - 1))}.
}
\section{nn_module}{
Calls \code{\link[torch:nn_elu]{torch::nn_elu()}} when trained.
}
\section{Parameters}{
\itemize{
\item \code{alpha} :: \code{numeric(1)}\cr
The alpha value for the ELU formulation. Default: 1.0
\item \code{inplace} :: \code{logical(1)}\cr
Whether to do the operation in-place. Default: \code{FALSE}.
}
}
\section{Input and Output Channels}{
One input channel called \code{"input"} and one output channel called \code{"output"}.
For an explanation see \code{\link{PipeOpTorch}}.
}
\section{State}{
The state is the value calculated by the public method \verb{$shapes_out()}.
}
\examples{
\dontshow{if (torch::torch_is_installed()) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# Construct the PipeOp
pipeop = po("nn_elu")
pipeop
# The available parameters
pipeop$param_set
\dontshow{\}) # examplesIf}
}
\seealso{
Other PipeOps:
\code{\link{mlr_pipeops_nn_adaptive_avg_pool1d}},
\code{\link{mlr_pipeops_nn_adaptive_avg_pool2d}},
\code{\link{mlr_pipeops_nn_adaptive_avg_pool3d}},
\code{\link{mlr_pipeops_nn_avg_pool1d}},
\code{\link{mlr_pipeops_nn_avg_pool2d}},
\code{\link{mlr_pipeops_nn_avg_pool3d}},
\code{\link{mlr_pipeops_nn_batch_norm1d}},
\code{\link{mlr_pipeops_nn_batch_norm2d}},
\code{\link{mlr_pipeops_nn_batch_norm3d}},
\code{\link{mlr_pipeops_nn_block}},
\code{\link{mlr_pipeops_nn_celu}},
\code{\link{mlr_pipeops_nn_conv1d}},
\code{\link{mlr_pipeops_nn_conv2d}},
\code{\link{mlr_pipeops_nn_conv3d}},
\code{\link{mlr_pipeops_nn_conv_transpose1d}},
\code{\link{mlr_pipeops_nn_conv_transpose2d}},
\code{\link{mlr_pipeops_nn_conv_transpose3d}},
\code{\link{mlr_pipeops_nn_dropout}},
\code{\link{mlr_pipeops_nn_flatten}},
\code{\link{mlr_pipeops_nn_gelu}},
\code{\link{mlr_pipeops_nn_glu}},
\code{\link{mlr_pipeops_nn_hardshrink}},
\code{\link{mlr_pipeops_nn_hardsigmoid}},
\code{\link{mlr_pipeops_nn_hardtanh}},
\code{\link{mlr_pipeops_nn_head}},
\code{\link{mlr_pipeops_nn_layer_norm}},
\code{\link{mlr_pipeops_nn_leaky_relu}},
\code{\link{mlr_pipeops_nn_linear}},
\code{\link{mlr_pipeops_nn_log_sigmoid}},
\code{\link{mlr_pipeops_nn_max_pool1d}},
\code{\link{mlr_pipeops_nn_max_pool2d}},
\code{\link{mlr_pipeops_nn_max_pool3d}},
\code{\link{mlr_pipeops_nn_merge}},
\code{\link{mlr_pipeops_nn_merge_cat}},
\code{\link{mlr_pipeops_nn_merge_prod}},
\code{\link{mlr_pipeops_nn_merge_sum}},
\code{\link{mlr_pipeops_nn_prelu}},
\code{\link{mlr_pipeops_nn_relu}},
\code{\link{mlr_pipeops_nn_relu6}},
\code{\link{mlr_pipeops_nn_reshape}},
\code{\link{mlr_pipeops_nn_rrelu}},
\code{\link{mlr_pipeops_nn_selu}},
\code{\link{mlr_pipeops_nn_sigmoid}},
\code{\link{mlr_pipeops_nn_softmax}},
\code{\link{mlr_pipeops_nn_softplus}},
\code{\link{mlr_pipeops_nn_softshrink}},
\code{\link{mlr_pipeops_nn_softsign}},
\code{\link{mlr_pipeops_nn_squeeze}},
\code{\link{mlr_pipeops_nn_tanh}},
\code{\link{mlr_pipeops_nn_tanhshrink}},
\code{\link{mlr_pipeops_nn_threshold}},
\code{\link{mlr_pipeops_nn_unsqueeze}},
\code{\link{mlr_pipeops_torch_ingress}},
\code{\link{mlr_pipeops_torch_ingress_categ}},
\code{\link{mlr_pipeops_torch_ingress_ltnsr}},
\code{\link{mlr_pipeops_torch_ingress_num}},
\code{\link{mlr_pipeops_torch_loss}},
\code{\link{mlr_pipeops_torch_model}},
\code{\link{mlr_pipeops_torch_model_classif}},
\code{\link{mlr_pipeops_torch_model_regr}}
}
\concept{PipeOps}
\section{Super classes}{
\code{\link[mlr3pipelines:PipeOp]{mlr3pipelines::PipeOp}} -> \code{\link[mlr3torch:PipeOpTorch]{mlr3torch::PipeOpTorch}} -> \code{PipeOpTorchELU}
}
\section{Methods}{
\subsection{Public methods}{
\itemize{
\item \href{#method-PipeOpTorchELU-new}{\code{PipeOpTorchELU$new()}}
\item \href{#method-PipeOpTorchELU-clone}{\code{PipeOpTorchELU$clone()}}
}
}
\if{html}{\out{
<details open><summary>Inherited methods</summary>
<ul>
<li><span class="pkg-link" data-pkg="mlr3pipelines" data-topic="PipeOp" data-id="help"><a href='../../mlr3pipelines/html/PipeOp.html#method-PipeOp-help'><code>mlr3pipelines::PipeOp$help()</code></a></span></li>
<li><span class="pkg-link" data-pkg="mlr3pipelines" data-topic="PipeOp" data-id="predict"><a href='../../mlr3pipelines/html/PipeOp.html#method-PipeOp-predict'><code>mlr3pipelines::PipeOp$predict()</code></a></span></li>
<li><span class="pkg-link" data-pkg="mlr3pipelines" data-topic="PipeOp" data-id="print"><a href='../../mlr3pipelines/html/PipeOp.html#method-PipeOp-print'><code>mlr3pipelines::PipeOp$print()</code></a></span></li>
<li><span class="pkg-link" data-pkg="mlr3pipelines" data-topic="PipeOp" data-id="train"><a href='../../mlr3pipelines/html/PipeOp.html#method-PipeOp-train'><code>mlr3pipelines::PipeOp$train()</code></a></span></li>
<li><span class="pkg-link" data-pkg="mlr3torch" data-topic="PipeOpTorch" data-id="shapes_out"><a href='../../mlr3torch/html/PipeOpTorch.html#method-PipeOpTorch-shapes_out'><code>mlr3torch::PipeOpTorch$shapes_out()</code></a></span></li>
</ul>
</details>
}}
\if{html}{\out{<hr>}}
\if{html}{\out{<a id="method-PipeOpTorchELU-new"></a>}}
\if{latex}{\out{\hypertarget{method-PipeOpTorchELU-new}{}}}
\subsection{Method \code{new()}}{
Creates a new instance of this \link[R6:R6Class]{R6} class.
\subsection{Usage}{
\if{html}{\out{<div class="r">}}\preformatted{PipeOpTorchELU$new(id = "nn_elu", param_vals = list())}\if{html}{\out{</div>}}
}
\subsection{Arguments}{
\if{html}{\out{<div class="arguments">}}
\describe{
\item{\code{id}}{(\code{character(1)})\cr
Identifier of the resulting object.}
\item{\code{param_vals}}{(\code{list()})\cr
List of hyperparameter settings, overwriting the hyperparameter settings that would
otherwise be set during construction.}
}
\if{html}{\out{</div>}}
}
}
\if{html}{\out{<hr>}}
\if{html}{\out{<a id="method-PipeOpTorchELU-clone"></a>}}
\if{latex}{\out{\hypertarget{method-PipeOpTorchELU-clone}{}}}
\subsection{Method \code{clone()}}{
The objects of this class are cloneable with this method.
\subsection{Usage}{
\if{html}{\out{<div class="r">}}\preformatted{PipeOpTorchELU$clone(deep = FALSE)}\if{html}{\out{</div>}}
}
\subsection{Arguments}{
\if{html}{\out{<div class="arguments">}}
\describe{
\item{\code{deep}}{Whether to make a deep clone.}
}
\if{html}{\out{</div>}}
}
}
}