forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vignettes.yaml
244 lines (209 loc) · 10.7 KB
/
vignettes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
- category: Introduction
vignettes:
- title: Guided tutorial --- 2,700 PBMCs
name: pbmc3k_tutorial
summary: |
A basic overview of Seurat that includes an introduction to common analytical workflows.
image: pbmc3k_umap.jpg
- title: Multimodal analysis
name: multimodal_vignette
summary: |
An introduction to working with multi-modal datasets in Seurat.
image: citeseq_plot.jpg
- title: Analysis of spatial datasets (Sequencing-based)
name: spatial_vignette
summary: |
Learn to explore spatially-resolved transcriptomic data with examples from 10x Visium and Slide-seq v2.
image: spatial_vignette_ttr.jpg
- title: Analysis of spatial datasets (Imaging-based)
name: spatial_vignette_2
summary: |
Learn to explore spatially-resolved data from multiplexed imaging technologies, including MERFISH, Xenium, CosMx SMI, and CODEX.
image: spatial_vignette_2.jpg
- category: Data Integration
vignettes:
- title: Introduction to scRNA-seq integration
name: integration_introduction
summary: |
An introduction to integrating scRNA-seq datasets in order to identify and compare shared cell types across experiments.
image: pbmc_alignment.jpg
- title: Mapping and annotating query datasets
name: integration_mapping
summary: |
Learn how to map a query scRNA-seq dataset onto a reference in order to automate the annotation and visualization of query cells.
image: assets/anchorsb_2018.png
- title: Fast integration using reciprocal PCA (RPCA)
name: integration_rpca
summary: |
Identify anchors using the reciprocal PCA (rPCA) workflow, which performs a faster and more conservative integration.
image: rpca_integration.jpg
- title: Tips for integrating large datasets
name: integration_large_datasets
summary: |
Tips and examples for integrating very large scRNA-seq datasets (including >200,000 cells).
image: bm280k_integrated.jpg
- title: Integrating scRNA-seq and scATAC-seq data
name: atacseq_integration_vignette
summary: |
Annotate, visualize, and interpret an scATAC-seq experiment using scRNA-seq data from the same biological system.
image: atacseq_integration_vignette.jpg
- title: Multimodal Reference Mapping
name: multimodal_reference_mapping
summary: |
Analyze query data in the context of multimodal reference atlases.
image: multimodal_reference_mapping.jpg
- category: New Statistical Approaches
vignettes:
- title: Weighted Nearest Neighbor Analysis
name: weighted_nearest_neighbor_analysis
summary: |
Analyze multimodal single-cell data with weighted nearest neighbor analysis in Seurat v4.
image: weighted_nearest_neighbor_analysis.jpg
- title: Mixscape
name: mixscape_vignette
summary: |
Explore new methods to analyze pooled single-celled perturbation screens.
image: mixscape_vignette.jpg
- title: SCTransform
name: sctransform_vignette
summary: |
Examples of how to use the SCTransform wrapper in Seurat.
image: assets/sctransform.png
- title: SCTransform, v2 regularization
name: sctransform_v2_vignette
summary: |
Examples of how to perform normalization, feature selection, integration, and differential expression with an updated version of sctransform.
image: assets/sctransform_v2.png
- category: Other
vignettes:
- title: Visualization
name: visualization_vignette
summary: |
An overview of the major visualization functionality within Seurat.
image: visualization_vignette.jpg
- title: Cell Cycle Regression
name: cell_cycle_vignette
summary: |
Mitigate the effects of cell cycle heterogeneity by computing cell cycle phase scores based on marker genes.
image: cell_cycle_vignette.jpg
- title: Differential Expression Testing
name: de_vignette
summary: |
Perform differential expression (DE) testing in Seurat using a number of frameworks.
image: assets/de_vignette.png
- title: Demultiplex Cell Hashing data
name: hashing_vignette
summary: |
Learn how to work with data produced with Cell Hashing.
image: assets/hashing_vignette.png
- title: Interoperability with Other Analysis Tools
name: conversion_vignette
summary: |
Convert data between formats for different analysis tools.
image: assets/conversion_vignette.png
- title: Parallelization
name: future_vignette
summary: |
Speed up compute-intensive functions with parallelization.
image: assets/future_rocket.png
- category: Seurat Wrappers
hash: seurat-wrappers
description: |
In order to facilitate the use of community tools with Seurat, we provide the Seurat Wrappers package, which contains code to run other analysis tools on Seurat objects. For the initial release, we provide wrappers for a few packages in the table below but would encourage other package developers interested in interfacing with Seurat to check out our contributor guide [here](https://github.com/satijalab/seurat.wrappers/wiki/Submission-Process). <br><br>
vignettes:
- name: alevin
title: Import alevin counts into Seurat
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/alevin.html
reference: https://doi.org/10.1186/s13059-019-1670-y
citation: Srivastava et. al., Genome Biology 2019
source: https://github.com/k3yavi/alevin-Rtools
- name: ALRA
title: Zero-preserving imputation with ALRA
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/alra.html
reference: https://doi.org/10.1101/397588
citation: Linderman et al, bioRxiv 2018
source: https://github.com/KlugerLab/ALRA
- name: CoGAPS
title: Running CoGAPS on Seurat Objects
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/cogaps.html
reference: https://doi.org/10.1016/j.cels.2019.04.004
citation: Stein-O’Brien et al, Cell Systems 2019
source: https://www.bioconductor.org/packages/release/bioc/html/CoGAPS.html
- name: Conos
title: Integration of datasets using Conos
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/conos.html
reference: https://doi.org/10.1038/s41592-019-0466-z
citation: Barkas et al, Nature Methods 2019
source: https://github.com/hms-dbmi/conos
- name: fastMNN
title: Running fastMNN on Seurat Objects
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/fast_mnn.html
reference: https://doi.org/10.1038/nbt.4091
citation: Haghverdi et al, Nature Biotechnology 2018
source: https://bioconductor.org/packages/release/bioc/html/scran.html
- name: glmpca
title: Running GLM-PCA on a Seurat Object
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/glmpca.html
reference: https://doi.org/10.1186/s13059-019-1861-6
citation: Townes et al, Genome Biology 2019
source: https://github.com/willtownes/glmpca
- name: Harmony
title: Integration of datasets using Harmony
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/harmony.html
reference: https://doi.org/10.1038/s41592-019-0619-0
citation: Korsunsky et al, Nature Methods 2019
source: https://github.com/immunogenomics/harmony
- name: LIGER
title: Integrating Seurat objects using LIGER
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/liger.html
reference: https://doi.org/10.1016/j.cell.2019.05.006
citation: Welch et al, Cell 2019
source: https://github.com/MacoskoLab/liger
- name: Monocle3
title: Calculating Trajectories with Monocle 3 and Seurat
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/monocle3.html
reference: https://doi.org/10.1038/s41586-019-0969-x
citation: Cao et al, Nature 2019
source: https://cole-trapnell-lab.github.io/monocle3
- name: Nebulosa
title: Visualization of gene expression with Nebulosa
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/nebulosa.html
reference: https://github.com/powellgenomicslab/Nebulosa
citation: Jose Alquicira-Hernandez and Joseph E. Powell, Under Review
source: https://github.com/powellgenomicslab/Nebulosa
- name: schex
title: Using schex with Seurat
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/schex.html
reference: https://doi.org/0.1242/dev.173807
citation: Freytag, R package 2019
source: https://github.com/SaskiaFreytag/schex
- name: scVelo
title: Estimating RNA Velocity using Seurat and scVelo
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/scvelo.html
reference: https://doi.org/10.1101/820936
citation: Bergen et al, bioRxiv 2019
source: https://scvelo.readthedocs.io/
- name: Velocity
title: Estimating RNA Velocity using Seurat
link: https://htmlpreview.github.io/?https://github.com/satijalab/seurat.wrappers/blob/master/docs/velocity.html
reference: 10.1038/s41586-018-0414-6
citation: La Manno et al, Nature 2018
source: https://velocyto.org
- name: CIPR
title: Using CIPR with human PBMC data
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/cipr.html
reference: https://doi.org/10.1186/s12859-020-3538-2
citation: Ekiz et. al., BMC Bioinformatics 2020
source: https://github.com/atakanekiz/CIPR-Package
- name: miQC
title: Running miQC on Seurat objects
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/miQC.html
reference: https://www.biorxiv.org/content/10.1101/2021.03.03.433798v1
citation: Hippen et. al., bioRxiv 2021
source: https://github.com/greenelab/miQC
- name: tricycle
title: Running estimate_cycle_position from tricycle on Seurat Objects
link: http://htmlpreview.github.io/?https://github.com/satijalab/seurat-wrappers/blob/master/docs/tricycle.html
reference: https://doi.org/10.1101/2021.04.06.438463
citation: Zheng et. al., bioRxiv 2021
source: https://www.bioconductor.org/packages/release/bioc/html/tricycle.html