forked from deepfakes/faceswap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsort.py
909 lines (761 loc) · 33.1 KB
/
sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#!/usr/bin/env python3
"""
A tool that allows for sorting and grouping images in different ways.
"""
import logging
import os
import sys
import operator
from shutil import copyfile
import numpy as np
import cv2
from tqdm import tqdm
# faceswap imports
import face_recognition
from lib.cli import FullHelpArgumentParser
from lib import Serializer
from lib.faces_detect import DetectedFace
from lib.multithreading import SpawnProcess
from lib.queue_manager import queue_manager, QueueEmpty
from plugins.plugin_loader import PluginLoader
from . import cli
logger = logging.getLogger(__name__) # pylint: disable=invalid-name
class Sort():
""" Sorts folders of faces based on input criteria """
# pylint: disable=no-member
def __init__(self, arguments):
self.args = arguments
self.changes = None
self.serializer = None
def process(self):
""" Main processing function of the sort tool """
# Setting default argument values that cannot be set by argparse
# Set output dir to the same value as input dir
# if the user didn't specify it.
if self.args.output_dir.lower() == "_output_dir":
self.args.output_dir = self.args.input_dir
# Assigning default threshold values based on grouping method
if (self.args.final_process == "folders"
and self.args.min_threshold == -1.0):
method = self.args.group_method.lower()
if method == 'face':
self.args.min_threshold = 0.6
elif method == 'face-cnn':
self.args.min_threshold = 7.2
elif method == 'hist':
self.args.min_threshold = 0.3
# If logging is enabled, prepare container
if self.args.log_changes:
self.changes = dict()
# Assign default sort_log.json value if user didn't specify one
if self.args.log_file_path == 'sort_log.json':
self.args.log_file_path = os.path.join(self.args.input_dir,
'sort_log.json')
# Set serializer based on logfile extension
serializer_ext = os.path.splitext(
self.args.log_file_path)[-1]
self.serializer = Serializer.get_serializer_from_ext(
serializer_ext)
# Prepare sort, group and final process method names
_sort = "sort_" + self.args.sort_method.lower()
_group = "group_" + self.args.group_method.lower()
_final = "final_process_" + self.args.final_process.lower()
self.args.sort_method = _sort.replace('-', '_')
self.args.group_method = _group.replace('-', '_')
self.args.final_process = _final.replace('-', '_')
self.sort_process()
@staticmethod
def launch_aligner(loglevel):
""" Load the aligner plugin to retrieve landmarks """
out_queue = queue_manager.get_queue("out")
kwargs = {"in_queue": queue_manager.get_queue("in"),
"out_queue": out_queue}
for plugin in ("fan", "dlib"):
aligner = PluginLoader.get_aligner(plugin)(loglevel=loglevel)
process = SpawnProcess(aligner.run, **kwargs)
event = process.event
process.start()
# Wait for Aligner to take init
# The first ever load of the model for FAN has reportedly taken
# up to 3-4 minutes, hence high timeout.
event.wait(300)
if not event.is_set():
if plugin == "fan":
process.join()
logger.error("Error initializing FAN. Trying Dlib")
continue
else:
raise ValueError("Error inititalizing Aligner")
if plugin == "dlib":
return
try:
err = None
err = out_queue.get(True, 1)
except QueueEmpty:
pass
if not err:
break
process.join()
logger.error("Error initializing FAN. Trying Dlib")
@staticmethod
def alignment_dict(image):
""" Set the image to a dict for alignment """
height, width = image.shape[:2]
face = DetectedFace(x=0, w=width, y=0, h=height)
face = face.to_dlib_rect()
return {"image": image,
"detected_faces": [face]}
@staticmethod
def get_landmarks(filename):
""" Extract the face from a frame (If not alignments file found) """
image = cv2.imread(filename)
queue_manager.get_queue("in").put(Sort.alignment_dict(image))
face = queue_manager.get_queue("out").get()
landmarks = face["landmarks"][0]
return landmarks
def sort_process(self):
"""
This method dynamically assigns the functions that will be used to run
the core process of sorting, optionally grouping, renaming/moving into
folders. After the functions are assigned they are executed.
"""
sort_method = self.args.sort_method.lower()
group_method = self.args.group_method.lower()
final_method = self.args.final_process.lower()
img_list = getattr(self, sort_method)()
if "folders" in final_method:
# Check if non-dissim sort method and group method are not the same
if group_method.replace('group_', '') not in sort_method:
img_list = self.reload_images(group_method, img_list)
img_list = getattr(self, group_method)(img_list)
else:
img_list = getattr(self, group_method)(img_list)
getattr(self, final_method)(img_list)
logger.info("Done.")
# Methods for sorting
def sort_blur(self):
""" Sort by blur amount """
input_dir = self.args.input_dir
logger.info("Sorting by blur...")
img_list = [[img, self.estimate_blur(img)]
for img in
tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout)]
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_face(self):
""" Sort by face similarity """
input_dir = self.args.input_dir
logger.info("Sorting by face similarity...")
img_list = [[img, face_recognition.face_encodings(cv2.imread(img))]
for img in
tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout)]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Sorting",
file=sys.stdout):
min_score = float("inf")
j_min_score = i + 1
for j in range(i + 1, len(img_list)):
f1encs = img_list[i][1]
f2encs = img_list[j][1]
if f1encs and f2encs:
score = face_recognition.face_distance(f1encs[0],
f2encs)[0]
else:
score = float("inf")
if score < min_score:
min_score = score
j_min_score = j
(img_list[i + 1],
img_list[j_min_score]) = (img_list[j_min_score],
img_list[i + 1])
return img_list
def sort_face_dissim(self):
""" Sort by face dissimilarity """
input_dir = self.args.input_dir
logger.info("Sorting by face dissimilarity...")
img_list = [[img, face_recognition.face_encodings(cv2.imread(img)), 0]
for img in
tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout)]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len), desc="Sorting", file=sys.stdout):
score_total = 0
for j in range(0, img_list_len):
if i == j:
continue
try:
score_total += face_recognition.face_distance(
[img_list[i][1]],
[img_list[j][1]])
except:
logger.info("except")
pass
img_list[i][2] = score_total
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list
def sort_face_cnn(self):
""" Sort by CNN similarity """
self.launch_aligner(self.args.loglevel)
input_dir = self.args.input_dir
logger.info("Sorting by face-cnn similarity...")
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2))])
queue_manager.terminate_queues()
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Sorting",
file=sys.stdout):
min_score = float("inf")
j_min_score = i + 1
for j in range(i + 1, len(img_list)):
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score = np.sum(np.absolute((fl2 - fl1).flatten()))
if score < min_score:
min_score = score
j_min_score = j
(img_list[i + 1],
img_list[j_min_score]) = (img_list[j_min_score],
img_list[i + 1])
return img_list
def sort_face_cnn_dissim(self):
""" Sort by CNN dissimilarity """
self.launch_aligner(self.args.loglevel)
input_dir = self.args.input_dir
logger.info("Sorting by face-cnn dissimilarity...")
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2)), 0])
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Sorting",
file=sys.stdout):
score_total = 0
for j in range(i + 1, len(img_list)):
if i == j:
continue
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score_total += np.sum(np.absolute((fl2 - fl1).flatten()))
img_list[i][2] = score_total
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list
def sort_face_yaw(self):
""" Sort by yaw of face """
self.launch_aligner(self.args.loglevel)
input_dir = self.args.input_dir
img_list = []
for img in tqdm(self.find_images(input_dir),
desc="Loading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
img_list.append(
[img, self.calc_landmarks_face_yaw(np.array(landmarks))])
logger.info("Sorting by face-yaw...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_hist(self):
""" Sort by histogram of face similarity """
input_dir = self.args.input_dir
logger.info("Sorting by histogram similarity...")
img_list = [
[img, cv2.calcHist([cv2.imread(img)], [0], None, [256], [0, 256])]
for img in
tqdm(self.find_images(input_dir), desc="Loading", file=sys.stdout)
]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1), desc="Sorting",
file=sys.stdout):
min_score = float("inf")
j_min_score = i + 1
for j in range(i + 1, len(img_list)):
score = cv2.compareHist(img_list[i][1],
img_list[j][1],
cv2.HISTCMP_BHATTACHARYYA)
if score < min_score:
min_score = score
j_min_score = j
(img_list[i + 1],
img_list[j_min_score]) = (img_list[j_min_score],
img_list[i + 1])
return img_list
def sort_hist_dissim(self):
""" Sort by histigram of face dissimilarity """
input_dir = self.args.input_dir
logger.info("Sorting by histogram dissimilarity...")
img_list = [
[img,
cv2.calcHist([cv2.imread(img)], [0], None, [256], [0, 256]), 0]
for img in
tqdm(self.find_images(input_dir), desc="Loading", file=sys.stdout)
]
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len), desc="Sorting", file=sys.stdout):
score_total = 0
for j in range(0, img_list_len):
if i == j:
continue
score_total += cv2.compareHist(img_list[i][1],
img_list[j][1],
cv2.HISTCMP_BHATTACHARYYA)
img_list[i][2] = score_total
logger.info("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list
# Methods for grouping
def group_blur(self, img_list):
""" Group into bins by blur """
# Starting the binning process
num_bins = self.args.num_bins
# The last bin will get all extra images if it's
# not possible to distribute them evenly
num_per_bin = len(img_list) // num_bins
remainder = len(img_list) % num_bins
logger.info("Grouping by blur...")
bins = [[] for _ in range(num_bins)]
idx = 0
for i in range(num_bins):
for _ in range(num_per_bin):
bins[i].append(img_list[idx][0])
idx += 1
# If remainder is 0, nothing gets added to the last bin.
for i in range(1, remainder + 1):
bins[-1].append(img_list[-i][0])
return bins
def group_face(self, img_list):
""" Group into bins by face similarity """
logger.info("Grouping by face similarity...")
# Groups are of the form: group_num -> reference face
reference_groups = dict()
# Bins array, where index is the group number and value is
# an array containing the file paths to the images in that group.
# The first group (0), is always the non-face group.
bins = [[]]
# Comparison threshold used to decide how similar
# faces have to be to be grouped together.
min_threshold = self.args.min_threshold
img_list_len = len(img_list)
for i in tqdm(range(1, img_list_len),
desc="Grouping",
file=sys.stdout):
f1encs = img_list[i][1]
# Check if current image is a face, if not then
# add it immediately to the non-face list.
if f1encs is None or len(f1encs) <= 0:
bins[0].append(img_list[i][0])
else:
current_best = [-1, float("inf")]
for key, references in reference_groups.items():
# Non-faces are not added to reference_groups dict, thus
# removing the need to check that f2encs is a face.
# The try-catch block is to handle the first face that gets
# processed, as the first value is None.
try:
score = self.get_avg_score_faces(f1encs, references)
except TypeError:
score = float("inf")
except ZeroDivisionError:
score = float("inf")
if score < current_best[1]:
current_best[0], current_best[1] = key, score
if current_best[1] < min_threshold:
reference_groups[current_best[0]].append(f1encs[0])
bins[current_best[0]].append(img_list[i][0])
else:
reference_groups[len(reference_groups)] = img_list[i][1]
bins.append([img_list[i][0]])
return bins
def group_face_cnn(self, img_list):
""" Group into bins by CNN face similarity """
logger.info("Grouping by face-cnn similarity...")
# Groups are of the form: group_num -> reference faces
reference_groups = dict()
# Bins array, where index is the group number and value is
# an array containing the file paths to the images in that group.
bins = []
# Comparison threshold used to decide how similar
# faces have to be to be grouped together.
# It is multiplied by 1000 here to allow the cli option to use smaller
# numbers.
min_threshold = self.args.min_threshold * 1000
img_list_len = len(img_list)
for i in tqdm(range(0, img_list_len - 1),
desc="Grouping",
file=sys.stdout):
fl1 = img_list[i][1]
current_best = [-1, float("inf")]
for key, references in reference_groups.items():
try:
score = self.get_avg_score_faces_cnn(fl1, references)
except TypeError:
score = float("inf")
except ZeroDivisionError:
score = float("inf")
if score < current_best[1]:
current_best[0], current_best[1] = key, score
if current_best[1] < min_threshold:
reference_groups[current_best[0]].append(fl1[0])
bins[current_best[0]].append(img_list[i][0])
else:
reference_groups[len(reference_groups)] = [img_list[i][1]]
bins.append([img_list[i][0]])
return bins
def group_face_yaw(self, img_list):
""" Group into bins by yaw of face """
# Starting the binning process
num_bins = self.args.num_bins
# The last bin will get all extra images if it's
# not possible to distribute them evenly
num_per_bin = len(img_list) // num_bins
remainder = len(img_list) % num_bins
logger.info("Grouping by face-yaw...")
bins = [[] for _ in range(num_bins)]
idx = 0
for i in range(num_bins):
for _ in range(num_per_bin):
bins[i].append(img_list[idx][0])
idx += 1
# If remainder is 0, nothing gets added to the last bin.
for i in range(1, remainder + 1):
bins[-1].append(img_list[-i][0])
return bins
def group_hist(self, img_list):
""" Group into bins by histogram """
logger.info("Grouping by histogram...")
# Groups are of the form: group_num -> reference histogram
reference_groups = dict()
# Bins array, where index is the group number and value is
# an array containing the file paths to the images in that group
bins = []
min_threshold = self.args.min_threshold
img_list_len = len(img_list)
reference_groups[0] = [img_list[0][1]]
bins.append([img_list[0][0]])
for i in tqdm(range(1, img_list_len),
desc="Grouping",
file=sys.stdout):
current_best = [-1, float("inf")]
for key, value in reference_groups.items():
score = self.get_avg_score_hist(img_list[i][1], value)
if score < current_best[1]:
current_best[0], current_best[1] = key, score
if current_best[1] < min_threshold:
reference_groups[current_best[0]].append(img_list[i][1])
bins[current_best[0]].append(img_list[i][0])
else:
reference_groups[len(reference_groups)] = [img_list[i][1]]
bins.append([img_list[i][0]])
return bins
# Final process methods
def final_process_rename(self, img_list):
""" Rename the files """
output_dir = self.args.output_dir
process_file = self.set_process_file_method(self.args.log_changes,
self.args.keep_original)
# Make sure output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
description = (
"Copying and Renaming" if self.args.keep_original
else "Moving and Renaming"
)
for i in tqdm(range(0, len(img_list)),
desc=description,
leave=False,
file=sys.stdout):
src = img_list[i][0]
src_basename = os.path.basename(src)
dst = os.path.join(output_dir, '{:05d}_{}'.format(i, src_basename))
try:
process_file(src, dst, self.changes)
except FileNotFoundError as err:
logger.error(err)
logger.error('fail to rename %s', src)
for i in tqdm(range(0, len(img_list)),
desc=description,
file=sys.stdout):
renaming = self.set_renaming_method(self.args.log_changes)
src, dst = renaming(img_list[i][0], output_dir, i, self.changes)
try:
os.rename(src, dst)
except FileNotFoundError as err:
logger.error(err)
logger.error('fail to rename %s', format(src))
if self.args.log_changes:
self.write_to_log(self.changes)
def final_process_folders(self, bins):
""" Move the files to folders """
output_dir = self.args.output_dir
process_file = self.set_process_file_method(self.args.log_changes,
self.args.keep_original)
# First create new directories to avoid checking
# for directory existence in the moving loop
logger.info("Creating group directories.")
for i in range(len(bins)):
directory = os.path.join(output_dir, str(i))
if not os.path.exists(directory):
os.makedirs(directory)
description = (
"Copying into Groups" if self.args.keep_original
else "Moving into Groups"
)
logger.info("Total groups found: %s", len(bins))
for i in tqdm(range(len(bins)), desc=description, file=sys.stdout):
for j in range(len(bins[i])):
src = bins[i][j]
src_basename = os.path.basename(src)
dst = os.path.join(output_dir, str(i), src_basename)
try:
process_file(src, dst, self.changes)
except FileNotFoundError as err:
logger.error(err)
logger.error("Failed to move '%s' to '%s'", src, dst)
if self.args.log_changes:
self.write_to_log(self.changes)
# Various helper methods
def write_to_log(self, changes):
""" Write the changes to log file """
logger.info("Writing sort log to: '%s'", self.args.log_file_path)
with open(self.args.log_file_path, 'w') as lfile:
lfile.write(self.serializer.marshal(changes))
def reload_images(self, group_method, img_list):
"""
Reloads the image list by replacing the comparative values with those
that the chosen grouping method expects.
:param group_method: str name of the grouping method that will be used.
:param img_list: image list that has been sorted by one of the sort
methods.
:return: img_list but with the comparative values that the chosen
grouping method expects.
"""
input_dir = self.args.input_dir
logger.info("Preparing to group...")
if group_method == 'group_blur':
temp_list = [[img, self.estimate_blur(cv2.imread(img))]
for img in
tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout)]
elif group_method == 'group_face':
temp_list = [
[img, face_recognition.face_encodings(cv2.imread(img))]
for img in tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout)]
elif group_method == 'group_face_cnn':
self.launch_aligner()
temp_list = []
for img in tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
temp_list.append([img, np.array(landmarks)
if landmarks
else np.zeros((68, 2))])
elif group_method == 'group_face_yaw':
self.launch_aligner()
temp_list = []
for img in tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout):
landmarks = self.get_landmarks(img)
temp_list.append(
[img,
self.calc_landmarks_face_yaw(np.array(landmarks))])
elif group_method == 'group_hist':
temp_list = [
[img,
cv2.calcHist([cv2.imread(img)], [0], None, [256], [0, 256])]
for img in
tqdm(self.find_images(input_dir),
desc="Reloading",
file=sys.stdout)
]
else:
raise ValueError("{} group_method not found.".format(group_method))
return self.splice_lists(img_list, temp_list)
@staticmethod
def splice_lists(sorted_list, new_vals_list):
"""
This method replaces the value at index 1 in each sub-list in the
sorted_list with the value that is calculated for the same img_path,
but found in new_vals_list.
Format of lists: [[img_path, value], [img_path2, value2], ...]
:param sorted_list: list that has been sorted by one of the sort
methods.
:param new_vals_list: list that has been loaded by a different method
than the sorted_list.
:return: list that is sorted in the same way as the input sorted list
but the values corresponding to each image are from new_vals_list.
"""
new_list = []
# Make new list of just image paths to serve as an index
val_index_list = [i[0] for i in new_vals_list]
for i in tqdm(range(len(sorted_list)),
desc="Splicing",
file=sys.stdout):
current_image = sorted_list[i][0]
new_val_index = val_index_list.index(current_image)
new_list.append([current_image, new_vals_list[new_val_index][1]])
return new_list
@staticmethod
def find_images(input_dir):
""" Return list of images at specified location """
result = []
extensions = [".jpg", ".png", ".jpeg"]
for root, _, files in os.walk(input_dir):
for file in files:
if os.path.splitext(file)[1].lower() in extensions:
result.append(os.path.join(root, file))
return result
@staticmethod
def estimate_blur(image_file):
"""
Estimate the amount of blur an image has
with the variance of the Laplacian.
Normalize by pixel number to offset the effect
of image size on pixel gradients & variance
"""
image = cv2.imread(image_file,cv2.IMREAD_GRAYSCALE)
blur_map = cv2.Laplacian(image, cv2.CV_32F)
score = np.var(blur_map) / np.sqrt(image.shape[0] * image.shape[1])
return score
@staticmethod
def calc_landmarks_face_pitch(flm):
""" UNUSED - Calculate the amount of pitch in a face """
var_t = ((flm[6][1] - flm[8][1]) + (flm[10][1] - flm[8][1])) / 2.0
var_b = flm[8][1]
return var_b - var_t
@staticmethod
def calc_landmarks_face_yaw(flm):
""" Calculate the amount of yaw in a face """
var_l = ((flm[27][0] - flm[0][0])
+ (flm[28][0] - flm[1][0])
+ (flm[29][0] - flm[2][0])) / 3.0
var_r = ((flm[16][0] - flm[27][0])
+ (flm[15][0] - flm[28][0])
+ (flm[14][0] - flm[29][0])) / 3.0
return var_r - var_l
@staticmethod
def set_process_file_method(log_changes, keep_original):
"""
Assigns the final file processing method based on whether changes are
being logged and whether the original files are being kept in the
input directory.
Relevant cli arguments: -k, -l
:return: function reference
"""
if log_changes:
if keep_original:
def process_file(src, dst, changes):
""" Process file method if logging changes
and keeping original """
copyfile(src, dst)
changes[src] = dst
else:
def process_file(src, dst, changes):
""" Process file method if logging changes
and not keeping original """
os.rename(src, dst)
changes[src] = dst
else:
if keep_original:
def process_file(src, dst, changes):
""" Process file method if not logging changes
and keeping original """
copyfile(src, dst)
else:
def process_file(src, dst, changes):
""" Process file method if not logging changes
and not keeping original """
os.rename(src, dst)
return process_file
@staticmethod
def set_renaming_method(log_changes):
""" Set the method for renaming files """
if log_changes:
def renaming(src, output_dir, i, changes):
""" Rename files method if logging changes """
src_basename = os.path.basename(src)
__src = os.path.join(output_dir,
'{:05d}_{}'.format(i, src_basename))
dst = os.path.join(
output_dir,
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
changes[src] = dst
return __src, dst
else:
def renaming(src, output_dir, i, changes):
""" Rename files method if not logging changes """
src_basename = os.path.basename(src)
src = os.path.join(output_dir,
'{:05d}_{}'.format(i, src_basename))
dst = os.path.join(
output_dir,
'{:05d}{}'.format(i, os.path.splitext(src_basename)[1]))
return src, dst
return renaming
@staticmethod
def get_avg_score_hist(img1, references):
""" Return the average histogram score between a face and
reference image """
scores = []
for img2 in references:
score = cv2.compareHist(img1, img2, cv2.HISTCMP_BHATTACHARYYA)
scores.append(score)
return sum(scores) / len(scores)
@staticmethod
def get_avg_score_faces(f1encs, references):
""" Return the average similarity score between a face and
reference image """
scores = []
for f2encs in references:
score = face_recognition.face_distance(f1encs, f2encs)[0]
scores.append(score)
return sum(scores) / len(scores)
@staticmethod
def get_avg_score_faces_cnn(fl1, references):
""" Return the average CNN similarity score
between a face and reference image """
scores = []
for fl2 in references:
score = np.sum(np.absolute((fl2 - fl1).flatten()))
scores.append(score)
return sum(scores) / len(scores)
def bad_args(args):
""" Print help on bad arguments """
PARSER.print_help()
exit(0)
if __name__ == "__main__":
__warning_string = "Important: face-cnn method will cause an error when "
__warning_string += "this tool is called directly instead of through the "
__warning_string += "tools.py command script."
print(__warning_string)
print("Images sort tool.\n")
PARSER = FullHelpArgumentParser()
SUBPARSER = PARSER.add_subparsers()
SORT = cli.SortArgs(
SUBPARSER, "sort", "Sort images using various methods.")
PARSER.set_defaults(func=bad_args)
ARGUMENTS = PARSER.parse_args()
ARGUMENTS.func(ARGUMENTS)