-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
84 lines (69 loc) · 2.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import numpy as np
import torch
import random
from config import cfg
import argparse
from data import build_dataloader
from processor import do_inference
from utils.logger import setup_logger
from model import build_model
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="CC_ReID Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("EVA-attribure", output_dir, if_train=False)
logger.info(args)
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
# os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
torch.cuda.set_device(args.local_rank)
set_seed(cfg.SOLVER.SEED)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
if cfg.DATA.DATASET == 'prcc':
trainloader, queryloader_same, queryloader_diff, galleryloader, dataset, train_sampler,val_loader,val_loader_same= build_dataloader(
cfg)
else:
trainloader, queryloader, galleryloader, dataset, train_sampler ,val_loader= build_dataloader(cfg)
model = build_model(cfg,dataset.num_train_pids)
model.load_param(cfg.TEST.WEIGHT)
if cfg.DATA.DATASET == 'prcc':
do_inference(cfg,
model,
galleryloader,
dataset,
val_loader=val_loader,
val_loader_same=val_loader_same
)
else:
do_inference(cfg,
model,
galleryloader,
dataset,
queryloader,
val_loader=val_loader
)