forked from mamedev/mame
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheigccx86.h
614 lines (510 loc) · 18.8 KB
/
eigccx86.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// license:BSD-3-Clause
// copyright-holders:Vas Crabb
/***************************************************************************
eigccx86.h
x86 (32 and 64-bit) inline implementations for GCC compilers. This
code is automatically included if appropriate by eminline.h.
***************************************************************************/
#ifndef MAME_OSD_EIGCCX86_H
#define MAME_OSD_EIGCCX86_H
// Include MMX/SSE intrinsics headers
#ifdef __SSE2__
#include <cstdlib>
#include <mmintrin.h> // MMX
#include <xmmintrin.h> // SSE
#include <emmintrin.h> // SSE2
#endif
/***************************************************************************
INLINE MATH FUNCTIONS
***************************************************************************/
/*-------------------------------------------------
mul_32x32 - perform a signed 32 bit x 32 bit
multiply and return the full 64 bit result
-------------------------------------------------*/
// GCC can do a good job of this.
/*-------------------------------------------------
mulu_32x32 - perform an unsigned 32 bit x
32 bit multiply and return the full 64 bit
result
-------------------------------------------------*/
// GCC can do a good job of this.
/*-------------------------------------------------
mul_32x32_hi - perform a signed 32 bit x 32 bit
multiply and return the upper 32 bits of the
result
-------------------------------------------------*/
// GCC can do a good job of this.
/*-------------------------------------------------
mulu_32x32_hi - perform an unsigned 32 bit x
32 bit multiply and return the upper 32 bits
of the result
-------------------------------------------------*/
// GCC can do a good job of this.
/*-------------------------------------------------
mul_32x32_shift - perform a signed 32 bit x
32 bit multiply and shift the result by the
given number of bits before truncating the
result to 32 bits
-------------------------------------------------*/
#ifndef __x86_64__
#define mul_32x32_shift _mul_32x32_shift
inline int32_t ATTR_CONST ATTR_FORCE_INLINE
_mul_32x32_shift(int32_t a, int32_t b, uint8_t shift)
{
int32_t result;
// Valid for (0 <= shift <= 31)
__asm__ (
" imull %[b] ;"
" shrdl %[shift], %%edx, %[result] ;"
: [result] "=a" (result) // result ends up in eax
: [a] "%0" (a) // 'a' should also be in eax on entry
, [b] "rm" (b) // 'b' can be memory or register
, [shift] "Ic" (shift) // 'shift' must be constant in 0-31 range or in cl
: "%edx", "cc" // clobbers edx and condition codes
);
return result;
}
#endif
/*-------------------------------------------------
mulu_32x32_shift - perform an unsigned 32 bit x
32 bit multiply and shift the result by the
given number of bits before truncating the
result to 32 bits
-------------------------------------------------*/
#ifndef __x86_64__
#define mulu_32x32_shift _mulu_32x32_shift
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
_mulu_32x32_shift(uint32_t a, uint32_t b, uint8_t shift)
{
uint32_t result;
// Valid for (0 <= shift <= 31)
__asm__ (
" mull %[b] ;"
" shrdl %[shift], %%edx, %[result] ;"
: [result] "=a" (result) // result ends up in eax
: [a] "%0" (a) // 'a' should also be in eax on entry
, [b] "rm" (b) // 'b' can be memory or register
, [shift] "Ic" (shift) // 'shift' must be constant in 0-31 range or in cl
: "%edx", "cc" // clobbers edx and condition codes
);
return result;
}
#endif
/*-------------------------------------------------
div_64x32 - perform a signed 64 bit x 32 bit
divide and return the 32 bit quotient
-------------------------------------------------*/
#ifndef __x86_64__
#define div_64x32 _div_64x32
inline int32_t ATTR_CONST ATTR_FORCE_INLINE
_div_64x32(int64_t a, int32_t b)
{
int32_t result, temp;
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" idivl %[b] ;"
: [result] "=a" (result) // result ends up in eax
, [temp] "=d" (temp) // this is effectively a clobber
: [a] "A" (a) // 'a' in edx:eax
, [b] "rm" (b) // 'b' in register or memory
: "cc" // clobbers condition codes
);
return result;
}
#endif
/*-------------------------------------------------
divu_64x32 - perform an unsigned 64 bit x 32 bit
divide and return the 32 bit quotient
-------------------------------------------------*/
#ifndef __x86_64__
#define divu_64x32 _divu_64x32
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
_divu_64x32(uint64_t a, uint32_t b)
{
uint32_t result, temp;
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" divl %[b] ;"
: [result] "=a" (result) // result ends up in eax
, [temp] "=d" (temp) // this is effectively a clobber
: [a] "A" (a) // 'a' in edx:eax
, [b] "rm" (b) // 'b' in register or memory
: "cc" // clobbers condition codes
);
return result;
}
#endif
/*-------------------------------------------------
div_64x32_rem - perform a signed 64 bit x 32
bit divide and return the 32 bit quotient and
32 bit remainder
-------------------------------------------------*/
#define div_64x32_rem _div_64x32_rem
inline int32_t ATTR_FORCE_INLINE
_div_64x32_rem(int64_t dividend, int32_t divisor, int32_t &remainder)
{
int32_t quotient;
#ifndef __x86_64__
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" idivl %[divisor] ;"
: [result] "=a" (quotient) // quotient ends up in eax
, [remainder] "=d" (remainder) // remainder ends up in edx
: [dividend] "A" (dividend) // 'dividend' in edx:eax
, [divisor] "rm" (divisor) // 'divisor' in register or memory
: "cc" // clobbers condition codes
);
#else
int32_t const divh{ int32_t(uint32_t(uint64_t(dividend) >> 32)) };
int32_t const divl{ int32_t(uint32_t(uint64_t(dividend))) };
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" idivl %[divisor] ;"
: [result] "=a" (quotient) // quotient ends up in eax
, [remainder] "=d" (remainder) // remainder ends up in edx
: [divl] "a" (divl) // 'dividend' in edx:eax
, [divh] "d" (divh)
, [divisor] "rm" (divisor) // 'divisor' in register or memory
: "cc" // clobbers condition codes
);
#endif
return quotient;
}
/*-------------------------------------------------
divu_64x32_rem - perform an unsigned 64 bit x
32 bit divide and return the 32 bit quotient
and 32 bit remainder
-------------------------------------------------*/
#define divu_64x32_rem _divu_64x32_rem
inline uint32_t ATTR_FORCE_INLINE
_divu_64x32_rem(uint64_t dividend, uint32_t divisor, uint32_t &remainder)
{
uint32_t quotient;
#ifndef __x86_64__
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" divl %[divisor] ;"
: [result] "=a" (quotient) // quotient ends up in eax
, [remainder] "=d" (remainder) // remainder ends up in edx
: [dividend] "A" (dividend) // 'dividend' in edx:eax
, [divisor] "rm" (divisor) // 'divisor' in register or memory
: "cc" // clobbers condition codes
);
#else
uint32_t const divh{ uint32_t(dividend >> 32) };
uint32_t const divl{ uint32_t(dividend) };
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" divl %[divisor] ;"
: [result] "=a" (quotient) // quotient ends up in eax
, [remainder] "=d" (remainder) // remainder ends up in edx
: [divl] "a" (divl) // 'dividend' in edx:eax
, [divh] "d" (divh)
, [divisor] "rm" (divisor) // 'divisor' in register or memory
: "cc" // clobbers condition codes
);
#endif
return quotient;
}
/*-------------------------------------------------
div_32x32_shift - perform a signed divide of
two 32 bit values, shifting the first before
division, and returning the 32 bit quotient
-------------------------------------------------*/
#ifndef __x86_64__
#define div_32x32_shift _div_32x32_shift
inline int32_t ATTR_CONST ATTR_FORCE_INLINE
_div_32x32_shift(int32_t a, int32_t b, uint8_t shift)
{
int32_t result;
// Valid for (0 <= shift <= 31)
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" cdq ;"
" shldl %[shift], %[a], %%edx ;"
" shll %[shift], %[a] ;"
" idivl %[b] ;"
: [result] "=&a" (result) // result ends up in eax
: [a] "0" (a) // 'a' should also be in eax on entry
, [b] "rm" (b) // 'b' can be memory or register
, [shift] "Ic" (shift) // 'shift' must be constant in 0-31 range or in cl
: "%edx", "cc" // clobbers edx and condition codes
);
return result;
}
#endif
/*-------------------------------------------------
divu_32x32_shift - perform an unsigned divide of
two 32 bit values, shifting the first before
division, and returning the 32 bit quotient
-------------------------------------------------*/
#ifndef __x86_64__
#define divu_32x32_shift _divu_32x32_shift
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
_divu_32x32_shift(uint32_t a, uint32_t b, uint8_t shift)
{
int32_t result;
// Valid for (0 <= shift <= 31)
// Throws arithmetic exception if result doesn't fit in 32 bits
__asm__ (
" clr %%edx ;"
" shldl %[shift], %[a], %%edx ;"
" shll %[shift], %[a] ;"
" divl %[b] ;"
: [result] "=&a" (result) // result ends up in eax
: [a] "0" (a) // 'a' should also be in eax on entry
, [b] "rm" (b) // 'b' can be memory or register
, [shift] "Ic" (shift) // 'shift' must be constant in 0-31 range or in cl
: "%edx", "cc" // clobbers edx and condition codes
);
return result;
}
#endif
/*-------------------------------------------------
mod_64x32 - perform a signed 64 bit x 32 bit
divide and return the 32 bit remainder
-------------------------------------------------*/
#ifndef __x86_64__
#define mod_64x32 _mod_64x32
inline int32_t ATTR_CONST ATTR_FORCE_INLINE
_mod_64x32(int64_t a, int32_t b)
{
int32_t result, temp;
// Throws arithmetic exception if quotient doesn't fit in 32 bits
__asm__ (
" idivl %[b] ;"
: [result] "=d" (result) // Result ends up in edx
, [temp] "=a" (temp) // This is effectively a clobber
: [a] "A" (a) // 'a' in edx:eax
, [b] "rm" (b) // 'b' in register or memory
: "cc" // Clobbers condition codes
);
return result;
}
#endif
/*-------------------------------------------------
modu_64x32 - perform an unsigned 64 bit x 32 bit
divide and return the 32 bit remainder
-------------------------------------------------*/
#ifndef __x86_64__
#define modu_64x32 _modu_64x32
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
_modu_64x32(uint64_t a, uint32_t b)
{
uint32_t result, temp;
// Throws arithmetic exception if quotient doesn't fit in 32 bits
__asm__ (
" divl %[b] ;"
: [result] "=d" (result) // Result ends up in edx
, [temp] "=a" (temp) // This is effectively a clobber
: [a] "A" (a) // 'a' in edx:eax
, [b] "rm" (b) // 'b' in register or memory
: "cc" // Clobbers condition codes
);
return result;
}
#endif
/*-------------------------------------------------
recip_approx - compute an approximate floating
point reciprocal
-------------------------------------------------*/
#ifdef __SSE2__
#define recip_approx _recip_approx
inline float ATTR_CONST ATTR_FORCE_INLINE
_recip_approx(float value)
{
__m128 const value_xmm(_mm_set_ss(value));
__m128 const result_xmm(_mm_rcp_ss(value_xmm));
float result;
_mm_store_ss(&result, result_xmm);
return result;
}
#endif
/*-------------------------------------------------
mul_64x64 - perform a signed 64 bit x 64 bit
multiply and return the full 128 bit result
-------------------------------------------------*/
#ifdef __x86_64__
#define mul_64x64 _mul_64x64
inline int64_t ATTR_FORCE_INLINE
_mul_64x64(int64_t a, int64_t b, int64_t &hi)
{
__int128 const r(__int128(a) * b);
hi = int64_t(uint64_t((unsigned __int128)r >> 64));
return int64_t(uint64_t((unsigned __int128)r));
}
#endif
/*-------------------------------------------------
mulu_64x64 - perform an unsigned 64 bit x 64
bit multiply and return the full 128 bit result
-------------------------------------------------*/
#ifdef __x86_64__
#define mulu_64x64 _mulu_64x64
inline uint64_t ATTR_FORCE_INLINE
_mulu_64x64(uint64_t a, uint64_t b, uint64_t &hi)
{
unsigned __int128 const r((unsigned __int128)a * b);
hi = uint64_t(r >> 64);
return uint64_t(r);
}
#endif
/***************************************************************************
INLINE BIT MANIPULATION FUNCTIONS
***************************************************************************/
/*-------------------------------------------------
count_leading_zeros_32 - return the number of
leading zero bits in a 32-bit value
-------------------------------------------------*/
#define count_leading_zeros_32 _count_leading_zeros_32
inline uint8_t ATTR_CONST ATTR_FORCE_INLINE
_count_leading_zeros_32(uint32_t value)
{
uint32_t result;
__asm__ (
" bsrl %[value], %[result] ;"
" cmovzl %[bias], %[result] ;"
: [result] "=&r" (result) // result can be in any register
: [value] "rm" (value) // 'value' can be register or memory
, [bias] "rm" (~uint32_t(0)) // 'bias' can be register or memory
: "cc" // clobbers condition codes
);
return uint8_t(31U - result);
}
/*-------------------------------------------------
count_leading_ones_32 - return the number of
leading one bits in a 32-bit value
-------------------------------------------------*/
#define count_leading_ones_32 _count_leading_ones_32
inline uint8_t ATTR_CONST ATTR_FORCE_INLINE
_count_leading_ones_32(uint32_t value)
{
uint32_t result;
__asm__ (
" bsrl %[value], %[result] ;"
" cmovzl %[bias], %[result] ;"
: [result] "=&r" (result) // result can be in any register
: [value] "rm" (~value) // 'value' can be register or memory
, [bias] "rm" (~uint32_t(0)) // 'bias' can be register or memory
: "cc" // clobbers condition codes
);
return uint8_t(31U - result);
}
/*-------------------------------------------------
count_leading_zeros_64 - return the number of
leading zero bits in a 64-bit value
-------------------------------------------------*/
#ifdef __x86_64__
#define count_leading_zeros_64 _count_leading_zeros_64
inline uint8_t ATTR_CONST ATTR_FORCE_INLINE
_count_leading_zeros_64(uint64_t value)
{
uint64_t result;
__asm__ (
" bsrq %[value], %[result] ;"
" cmovzq %[bias], %[result] ;"
: [result] "=&r" (result) // result can be in any register
: [value] "rm" (value) // 'value' can be register or memory
, [bias] "rm" (~uint64_t(0)) // 'bias' can be register or memory
: "cc" // clobbers condition codes
);
return uint8_t(63U - result);
}
#endif
/*-------------------------------------------------
count_leading_ones_64 - return the number of
leading one bits in a 64-bit value
-------------------------------------------------*/
#ifdef __x86_64__
#define count_leading_ones_64 _count_leading_ones_64
inline uint8_t ATTR_CONST ATTR_FORCE_INLINE
_count_leading_ones_64(uint64_t value)
{
uint64_t result;
__asm__ (
" bsrq %[value], %[result] ;"
" cmovzq %[bias], %[result] ;"
: [result] "=&r" (result) // result can be in any register
: [value] "rm" (~value) // 'value' can be register or memory
, [bias] "rm" (~uint64_t(0)) // 'bias' can be register or memory
: "cc" // clobbers condition codes
);
return uint8_t(63U - result);
}
#endif
/*-------------------------------------------------
rotl_32 - circularly shift a 32-bit value left
by the specified number of bits (modulo 32)
-------------------------------------------------*/
#define rotl_32 _rotl_32
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
_rotl_32(uint32_t val, int shift)
{
uint32_t result;
__asm__ (
" roll %[shift], %[value] ;"
: [result] "=rm" (result) // result can be in register or memory
: [value] "%0" (val) // 'value' is updated with result
, [shift] "Ic" (uint8_t(unsigned(shift))) // 'shift' must be constant in 0-31 range or in cl
: "cc" // clobbers condition codes
);
return result;
}
/*-------------------------------------------------
rotr_32 - circularly shift a 32-bit value right
by the specified number of bits (modulo 32)
-------------------------------------------------*/
#define rotr_32 _rotr_32
inline uint32_t ATTR_CONST ATTR_FORCE_INLINE
rotr_32(uint32_t val, int shift)
{
uint32_t result;
__asm__ (
" rorl %[shift], %[value] ;"
: [result] "=rm" (result) // result can be in register or memory
: [value] "%0" (val) // 'value' is updated with result
, [shift] "Ic" (uint8_t(unsigned(shift))) // 'shift' must be constant in 0-31 range or in cl
: "cc" // clobbers condition codes
);
return result;
}
/*-------------------------------------------------
rotl_64 - circularly shift a 64-bit value left
by the specified number of bits (modulo 64)
-------------------------------------------------*/
#ifdef __x86_64__
#define rotl_64 _rotl_64
inline uint64_t ATTR_CONST ATTR_FORCE_INLINE
_rotl_64(uint64_t val, int shift)
{
uint64_t result;
__asm__ (
" rolq %[shift], %[value] ;"
: [result] "=rm" (result) // result can be in register or memory
: [value] "%0" (val) // 'value' is updated with result
, [shift] "Jc" (uint8_t(unsigned(shift))) // 'shift' must be constant in 0-63 range or in cl
: "cc" // clobbers condition codes
);
return result;
}
#endif
/*-------------------------------------------------
rotr_64 - circularly shift a 64-bit value right
by the specified number of bits (modulo 64)
-------------------------------------------------*/
#ifdef __x86_64__
#define rotr_64 _rotr_64
inline uint64_t ATTR_CONST ATTR_FORCE_INLINE
rotr_64(uint64_t val, int shift)
{
uint64_t result;
__asm__ (
" rorq %[shift], %[value] ;"
: [result] "=rm" (result) // result can be in register or memory
: [value] "%0" (val) // 'value' is updated with result
, [shift] "Jc" (uint8_t(unsigned(shift))) // 'shift' must be constant in 0-63 range or in cl
: "cc" // clobbers condition codes
);
return result;
}
#endif
#endif // MAME_OSD_EIGCCX86_H