forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_subclass.py
42 lines (32 loc) · 979 Bytes
/
demo_subclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import numpy as np
from keras import Model
from keras import layers
from keras import losses
from keras import metrics
from keras import optimizers
class MyModel(Model):
def __init__(self, hidden_dim, output_dim):
super().__init__()
self.dense1 = layers.Dense(hidden_dim, activation="relu")
self.dense2 = layers.Dense(hidden_dim, activation="relu")
self.dense3 = layers.Dense(output_dim)
def call(self, x):
x = self.dense1(x)
x = self.dense2(x)
return self.dense3(x)
model = MyModel(hidden_dim=256, output_dim=16)
x = np.random.random((50000, 128))
y = np.random.random((50000, 16))
batch_size = 32
epochs = 6
model.compile(
optimizer=optimizers.SGD(learning_rate=0.001),
loss=losses.MeanSquaredError(),
metrics=[metrics.MeanSquaredError()],
)
history = model.fit(
x, y, batch_size=batch_size, epochs=epochs, validation_split=0.2
)
print("History:")
print(history.history)
model.summary()