forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_torch_multi_gpu.py
213 lines (167 loc) · 5.86 KB
/
demo_torch_multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# flake8: noqa
import os
# Set backend env to torch
os.environ["KERAS_BACKEND"] = "torch"
import torch
import torch.nn as nn
import torch.optim as optim
from keras import layers
import keras
import numpy as np
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.distributed import DistributedSampler
# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)
learning_rate = 0.01
batch_size = 128
num_epochs = 1
def get_data():
# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# Create a TensorDataset
dataset = torch.utils.data.TensorDataset(
torch.from_numpy(x_train), torch.from_numpy(y_train)
)
return dataset
def get_model():
# Create the Keras model
model = keras.Sequential(
[
layers.Input(shape=(28, 28, 1)),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes),
]
)
return model
class MyModel(nn.Module):
def __init__(self):
super().__init__()
self.model = keras.Sequential(
[
layers.Input(shape=(28, 28, 1)),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes),
]
)
def forward(self, x):
return self.model(x)
def train(model, train_loader, num_epochs, optimizer, loss_fn):
for epoch in range(num_epochs):
running_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs = inputs.cuda(non_blocking=True)
targets = targets.cuda(non_blocking=True)
# Forward pass
outputs = model(inputs)
loss = loss_fn(outputs, targets)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
# Print loss statistics
if (batch_idx + 1) % 10 == 0:
print(
f"Epoch [{epoch+1}/{num_epochs}], "
f"Batch [{batch_idx+1}/{len(train_loader)}], "
f"Loss: {running_loss / 10}"
)
running_loss = 0.0
def setup(current_gpu_index, num_gpu):
# Device setup
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "56492"
device = torch.device("cuda:{}".format(current_gpu_index))
dist.init_process_group(
backend="nccl",
init_method="env://",
world_size=num_gpu,
rank=current_gpu_index,
)
torch.cuda.set_device(device)
def prepare(dataset, current_gpu_index, num_gpu, batch_size):
sampler = DistributedSampler(
dataset,
num_replicas=num_gpu,
rank=current_gpu_index,
shuffle=False,
)
# Create a DataLoader
train_loader = DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
shuffle=False,
)
return train_loader
def cleanup():
# Cleanup
dist.destroy_process_group()
def main(current_gpu_index, num_gpu):
# setup the process groups
setup(current_gpu_index, num_gpu)
#################################################################
######## Writing a torch training loop for a Keras model ########
#################################################################
dataset = get_data()
model = get_model()
# prepare the dataloader
dataloader = prepare(dataset, current_gpu_index, num_gpu, batch_size)
# Instantiate the torch optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Instantiate the torch loss function
loss_fn = nn.CrossEntropyLoss()
# Put model on device
model = model.to(current_gpu_index)
ddp_model = DDP(
model, device_ids=[current_gpu_index], output_device=current_gpu_index
)
train(ddp_model, dataloader, num_epochs, optimizer, loss_fn)
################################################################
######## Using a Keras model or layer in a torch Module ########
################################################################
torch_module = MyModel().to(current_gpu_index)
ddp_torch_module = DDP(
torch_module,
device_ids=[current_gpu_index],
output_device=current_gpu_index,
)
# Instantiate the torch optimizer
optimizer = optim.Adam(torch_module.parameters(), lr=learning_rate)
# Instantiate the torch loss function
loss_fn = nn.CrossEntropyLoss()
train(ddp_torch_module, dataloader, num_epochs, optimizer, loss_fn)
cleanup()
if __name__ == "__main__":
# GPU parameters
num_gpu = torch.cuda.device_count()
print(f"Running on {num_gpu} GPUs")
torch.multiprocessing.spawn(
main,
args=(num_gpu,),
nprocs=num_gpu,
join=True,
)