forked from Fence/EASDRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKerasEADQN.py
executable file
·174 lines (145 loc) · 6.7 KB
/
KerasEADQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
################################################################################
# Project: Extracting Action Sequences Based on Deep Reinforcement Learning
# Module: KerasEADQN
# Author: Wenfeng Feng
# Time: 2017.12
################################################################################
import ipdb
import keras
import numpy as np
import tensorflow.compat.v1 as tf
import keras.layers as kl
from keras.backend.tensorflow_backend import set_session
from keras.layers import *
from keras.models import Model
from keras.layers.normalization import BatchNormalization
tf.disable_v2_behavior()
class DeepQLearner:
"""
Deep Q-Network, in keras
"""
def __init__(self, args, agent_mode, data_format):
print('Initializing the DQN...')
self.word_dim = args.word_dim
self.tag_dim = args.tag_dim
self.dropout = args.dropout
self.optimizer = args.optimizer
self.dense_dim = args.dense_dim
self.batch_size = args.batch_size
self.gamma = args.gamma
self.learning_rate = args.learning_rate
self.num_actions = args.num_actions
self.num_filters = args.num_filters
self.data_format = data_format
if agent_mode == 'act':
self.num_words = args.num_words
self.emb_dim = args.word_dim + args.tag_dim
elif agent_mode == 'arg':
self.num_words = args.context_len
self.emb_dim = args.word_dim + args.dis_dim + args.tag_dim
self.build_dqn()
def build_dqn(self):
"""
Build Text-CNN
"""
# ipdb.set_trace()
fw = self.emb_dim #filter width
fn = self.num_filters #filter num
# inputs = Input(shape=(self.num_words, self.emb_dim, 1))
inputs = Input(shape=(1, self.num_words, self.emb_dim))
bi_gram = Conv2D(fn, (2, fw), padding='valid', kernel_initializer='glorot_normal')(inputs)
# bi_gram = BatchNormalization()(bi_gram)
bi_gram = Activation(activation='relu')(bi_gram)
bi_gram = MaxPooling2D((self.num_words - 1, 1), strides=(1, 1), padding='valid')(bi_gram)
tri_gram = Conv2D(fn, (3, fw), padding='valid', kernel_initializer='glorot_normal')(inputs)
# tri_gram = BatchNormalization()(tri_gram)
tri_gram = Activation(activation='relu')(tri_gram)
tri_gram = MaxPooling2D((self.num_words - 2, 1), strides=(1, 1), padding='valid')(tri_gram)
four_gram = Conv2D(fn, (4, fw), padding='valid', kernel_initializer='glorot_normal')(inputs)
# four_gram = BatchNormalization()(four_gram)
four_gram = Activation(activation='relu')(four_gram)
four_gram = MaxPooling2D((self.num_words - 3, 1), strides=(1, 1), padding='valid')(four_gram)
five_gram = Conv2D(fn, (5, fw), padding='valid', kernel_initializer='glorot_normal')(inputs)
# five_gram = BatchNormalization()(five_gram)
five_gram = Activation(activation='relu')(five_gram)
five_gram = MaxPooling2D((self.num_words - 4, 1), strides=(1, 1), padding='valid')(five_gram)
# concates.shape = [None, 1, 8, 32]
concate = kl.concatenate([bi_gram, tri_gram, four_gram, five_gram], axis=2)
flat = Flatten()(concate)
full_con = Dense(self.dense_dim, activation='relu', kernel_initializer='truncated_normal')(flat)
out = Dense(self.num_actions, kernel_initializer='truncated_normal')(full_con)
self.model = Model(inputs, out)
self.target_model = Model(inputs, out)
self.compile_model()
def compile_model(self):
"""
Choose optimizer and compile model
"""
if self.optimizer == 'sgd':
opt = keras.optimizers.SGD(lr=self.learning_rate, momentum=0.9, decay=0.9, nesterov=True)
elif self.optimizer == 'adam':
opt = keras.optimizers.Adam(lr=self.learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
elif self.optimizer == 'nadam':
opt = keras.optimizers.Nadam(lr=self.learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
elif self.optimizer == 'adadelta':
opt = keras.optimizers.Adadelta(lr=self.learning_rate, rho=0.95, epsilon=1e-08, decay=0.0)
else:
opt = keras.optimizers.RMSprop(lr=self.learning_rate, rho=0.9, epsilon=1e-06)
self.model.compile(optimizer=opt, loss='mse')
self.target_model.compile(optimizer=opt, loss='mse')
print(self.model.summary())
def update_target_network(self):
"""
Update target DQN
"""
self.target_model.set_weights(self.model.get_weights())
def train(self, minibatch):
"""
Train DQN with a mini-batch of samples
"""
# expand components of minibatch
prestates, actions, rewards, poststates, terminals = minibatch
if self.data_format == 'channels_last':
post_input = poststates[:, :, :, np.newaxis] # np.reshape(poststates, [-1, self.num_words, self.emb_dim, 1])
pre_input = prestates[:, :, :, np.newaxis] # np.reshape(prestates, [-1, self.num_words, self.emb_dim, 1])
else:
post_input = poststates[np.newaxis, :, :, :]
pre_input = prestates[np.newaxis, :, :, :]
postq = self.target_model.predict_on_batch(post_input)
targets = self.model.predict_on_batch(pre_input)
# calculate max Q-value for each poststate
maxpostq = np.max(postq, axis=1)
# update Q-value targets for actions taken
for i, action in enumerate(actions):
if terminals[i]:
targets[i, action] = float(rewards[i])
else:
targets[i, action] = float(rewards[i]) + self.gamma * maxpostq[i]
self.model.train_on_batch(pre_input, targets)
def predict(self, current_state):
"""
Predict Q-values
"""
# word_vec = current_state[:, -1]
# op_vec = np.reshape(current_state[:, -1], [-1, 1])
# expand_state = np.concatenate((word_vec, np.tile(op_vec, [1, self.tag_dim])), axis=-1)
if self.data_format == 'channels_last':
state_input = current_state[np.newaxis, :, :, np.newaxis]
else:
state_input = current_state[np.newaxis, np.newaxis, :, :]
qvalues = self.model.predict_on_batch(state_input)
return qvalues
def save_weights(self, weight_dir):
"""
Save weights
"""
self.model.save_weights(weight_dir)
print('Saved weights to %s ...' % weight_dir)
def load_weights(self, weight_dir):
"""
Load weights
"""
self.model.load_weights(weight_dir)
print('Loaded weights from %s ...' % weight_dir)