|
| 1 | +package pp.arithmetic.leetcode; |
| 2 | + |
| 3 | +/** |
| 4 | + * Created by wangpeng on 2019-10-24. |
| 5 | + * 74. 搜索二维矩阵 |
| 6 | + * |
| 7 | + * 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性: |
| 8 | + * |
| 9 | + * 每行中的整数从左到右按升序排列。 |
| 10 | + * 每行的第一个整数大于前一行的最后一个整数。 |
| 11 | + * 示例 1: |
| 12 | + * |
| 13 | + * 输入: |
| 14 | + * matrix = [ |
| 15 | + * [1, 3, 5, 7], |
| 16 | + * [10, 11, 16, 20], |
| 17 | + * [23, 30, 34, 50] |
| 18 | + * ] |
| 19 | + * target = 3 |
| 20 | + * 输出: true |
| 21 | + * 示例 2: |
| 22 | + * |
| 23 | + * 输入: |
| 24 | + * matrix = [ |
| 25 | + * [1, 3, 5, 7], |
| 26 | + * [10, 11, 16, 20], |
| 27 | + * [23, 30, 34, 50] |
| 28 | + * ] |
| 29 | + * target = 13 |
| 30 | + * 输出: false |
| 31 | + * |
| 32 | + * 来源:力扣(LeetCode) |
| 33 | + * 链接:https://leetcode-cn.com/problems/search-a-2d-matrix |
| 34 | + * 著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。 |
| 35 | + */ |
| 36 | +public class _74_searchMatrix { |
| 37 | + |
| 38 | + public static void main(String[] args) { |
| 39 | + int[][] matrix = new int[][]{ |
| 40 | + {1, 3, 5, 7}, |
| 41 | + {10, 11, 16, 20}, |
| 42 | + {23, 30, 34, 50} |
| 43 | + }; |
| 44 | + _74_searchMatrix searchMatrix = new _74_searchMatrix(); |
| 45 | + System.out.println(searchMatrix.searchMatrix(matrix,1)); |
| 46 | + System.out.println(searchMatrix.searchMatrix(matrix,3)); |
| 47 | + System.out.println(searchMatrix.searchMatrix(matrix,5)); |
| 48 | + System.out.println(searchMatrix.searchMatrix(matrix,7)); |
| 49 | + System.out.println(searchMatrix.searchMatrix(matrix,10)); |
| 50 | + System.out.println(searchMatrix.searchMatrix(matrix,11)); |
| 51 | + System.out.println(searchMatrix.searchMatrix(matrix,16)); |
| 52 | + System.out.println(searchMatrix.searchMatrix(matrix,20)); |
| 53 | + System.out.println(searchMatrix.searchMatrix(matrix,23)); |
| 54 | + System.out.println(searchMatrix.searchMatrix(matrix,50)); |
| 55 | + System.out.println(searchMatrix.searchMatrix(matrix,13)); |
| 56 | + System.out.println(searchMatrix.searchMatrix(matrix,40)); |
| 57 | + } |
| 58 | + |
| 59 | + /** |
| 60 | + * 解题思路: |
| 61 | + * 整个矩阵类似一个有序的升序数组,考虑使用二分查找是否存在目标值 |
| 62 | + * 难点:中间点的计算 |
| 63 | + * 1.利用公式计算起点和终点之间的差:(ex - sx) * col + ey - sy, |
| 64 | + * 2.中间点距离起点的步数:ml = ((ex - sx) * col + ey - sy) / 2 |
| 65 | + * 3.mx = sx + (ml + sy) / col <== 起点+偏移计算出中间点的x |
| 66 | + * 4.my = ml + sy - (mx - sx) * col <== 根据第一步的公式,代入mx,计算出my |
| 67 | + * 5.利用二分查找的规则判断出结果 |
| 68 | + * |
| 69 | + * 执行用时 :0 ms, 在所有 java 提交中击败了100.00%的用户 |
| 70 | + * 内存消耗 :42.6 MB, 在所有 java 提交中击败了39.56%的用户 |
| 71 | + * |
| 72 | + * @param matrix |
| 73 | + * @param target |
| 74 | + * @return |
| 75 | + */ |
| 76 | + public boolean searchMatrix(int[][] matrix, int target) { |
| 77 | + if (matrix == null || matrix.length == 0) return false; |
| 78 | + int row = matrix.length; |
| 79 | + int col = matrix[0].length; |
| 80 | + if (col == 0) return false; |
| 81 | + int sx = 0, sy = 0, ex = row - 1, ey = col - 1; |
| 82 | + if (target < matrix[sx][sy] || target > matrix[ex][ey]) return false; |
| 83 | + int mx, my, ml; |
| 84 | + while (sx * col + sy <= ex * col + ey) { |
| 85 | + //计算中间点 |
| 86 | + ml = ((ex - sx) * col + ey - sy) / 2; |
| 87 | + mx = sx + (ml + sy) / col; |
| 88 | + my = ml + sy - (mx - sx) * col; |
| 89 | + int middle = matrix[mx][my]; |
| 90 | + if (middle == target) return true; |
| 91 | + //防止无法退出 |
| 92 | + if (ml == 0) { |
| 93 | + if (matrix[ex][ey] == target) return true; |
| 94 | + return false; |
| 95 | + } |
| 96 | + if (middle > target) { |
| 97 | + ex = mx; |
| 98 | + ey = my; |
| 99 | + } else { |
| 100 | + sx = mx; |
| 101 | + sy = my; |
| 102 | + } |
| 103 | + } |
| 104 | + |
| 105 | + return false; |
| 106 | + } |
| 107 | +} |
0 commit comments